IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v124y2019icp108-127.html
   My bibliography  Save this article

Projecting line-haul truck technology adoption: How heterogeneity among fleets impacts system-wide adoption

Author

Listed:
  • Guerrero de la Peña, Ana
  • Davendralingam, Navindran
  • Raz, Ali K.
  • DeLaurentis, Daniel
  • Shaver, Gregory
  • Sujan, Vivek
  • Jain, Neera

Abstract

A System-of-Systems engineering methodology is used to project truck technology adoption behaviors of heterogeneous fleets operating over the U.S. line-haul freight transportation system. A constrained mixed-integer linear program is formulated to optimize total cost of ownership of regional fleets given vehicle highway performance, fleet operations, cost of energy, and freight demand. A design-of-experiments demonstrates adoption sensitivity to economic parameters and individual fleet management constraints. Validation results demonstrate the importance of modeling fleet heterogeneity to achieving 90% prediction accuracy of historical adoption of three different vehicle architectures across 12 representative fleets over a 11-year period.

Suggested Citation

  • Guerrero de la Peña, Ana & Davendralingam, Navindran & Raz, Ali K. & DeLaurentis, Daniel & Shaver, Gregory & Sujan, Vivek & Jain, Neera, 2019. "Projecting line-haul truck technology adoption: How heterogeneity among fleets impacts system-wide adoption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 108-127.
  • Handle: RePEc:eee:transe:v:124:y:2019:i:c:p:108-127
    DOI: 10.1016/j.tre.2018.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554518306653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2018.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    2. ., 2013. "Summary and conclusions," Chapters, in: Lawyers, Markets and Regulation, chapter 9, pages 144-152, Edward Elgar Publishing.
    3. Russell L. Ackoff, 1971. "Towards a System of Systems Concepts," Management Science, INFORMS, vol. 17(11), pages 661-671, July.
    4. Azad M. Madni & Michael Sievers, 2014. "System of Systems Integration: Key Considerations and Challenges," Systems Engineering, John Wiley & Sons, vol. 17(3), pages 330-347, September.
    5. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
    6. Fulton, Lew & Miller, Marshall, 2015. "Strategies for Transitioning to Low-Carbon Emission Trucks in the United States," Institute of Transportation Studies, Working Paper Series qt93g5336t, Institute of Transportation Studies, UC Davis.
    7. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles," Institute of Transportation Studies, Working Paper Series qt2k09h787, Institute of Transportation Studies, UC Davis.
    8. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles," Institute of Transportation Studies, Working Paper Series qt92h7g194, Institute of Transportation Studies, UC Davis.
    9. Schafer, Andreas & Jacoby, Henry D., 2006. "Vehicle technology under CO2 constraint: a general equilibrium analysis," Energy Policy, Elsevier, vol. 34(9), pages 975-985, June.
    10. Davis, Brian A. & Figliozzi, Miguel A., 2013. "A methodology to evaluate the competitiveness of electric delivery trucks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 8-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orji, Ifeyinwa Juliet & Kusi-Sarpong, Simonov & Huang, Shuangfa & Vazquez-Brust, Diego, 2020. "Evaluating the factors that influence blockchain adoption in the freight logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saptarshi Das & Ashok Sekar & Roger Chen & Hyung Chul Kim & Timothy J. Wallington & Eric Williams, 2017. "Impacts of Autonomous Vehicles on Consumers Time-Use Patterns," Challenges, MDPI, vol. 8(2), pages 1-15, December.
    2. Malakoutirad, Mohammad & Bradley, Thomas H. & Hagen, Chris, 2015. "Design considerations for an engine-integral reciprocating natural gas compressor," Applied Energy, Elsevier, vol. 156(C), pages 129-137.
    3. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
    4. Tianbo Wang & Lanchun Zhang & Qian Chen, 2020. "Effect of Valve Opening Manner and Sealing Method on the Steady Injection Characteristic of Gas Fuel Injector," Energies, MDPI, vol. 13(6), pages 1-12, March.
    5. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    6. Akoh Fabien Yao & Maxime Sèbe & Laura Recuero Virto & Abdelhak Nassiri & Hervé Dumez, 2024. "The effect of LNG bunkering on port competitiveness using multilevel data analysis [L'effet du soutage par GNL sur la compétitivité des ports à l'aide de l'analyse de données à plusieurs niveaux]," Post-Print hal-04611804, HAL.
    7. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    8. Nithin Isaac & Akshay Kumar Saha, 2022. "Predicting Vehicle Refuelling Trips through Generalised Poisson Modelling," Energies, MDPI, vol. 15(18), pages 1-18, September.
    9. Ogunlowo, Olufemi O. & Bristow, Abigail L. & Sohail, M., 2017. "A stakeholder analysis of the automotive industry's use of compressed natural gas in Nigeria," Transport Policy, Elsevier, vol. 53(C), pages 58-69.
    10. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    11. Ackah, Ishmael & TETTEH, ELIZABETH NARKIE, 2016. "Determinants of autogas demand among Taxi Drivers in rural Ghana," MPRA Paper 74242, University Library of Munich, Germany.
    12. Brozynski, Max T. & Leibowicz, Benjamin D., 2022. "A multi-level optimization model of infrastructure-dependent technology adoption: Overcoming the chicken-and-egg problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 755-770.
    13. Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Gao, Jiayang & Zhang, Tao, 2022. "Effects of public funding on the commercial diffusion of on-site hydrogen production technology: A system dynamics perspective," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    15. Imran Khan, Muhammad, 2017. "Policy options for the sustainable development of natural gas as transportation fuel," Energy Policy, Elsevier, vol. 110(C), pages 126-136.
    16. von Rosenstiel, Dirk Peters & Heuermann, Daniel F. & Hüsig, Stefan, 2015. "Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles," Energy Policy, Elsevier, vol. 78(C), pages 91-101.
    17. Liang, Yong-Liang & Guo, Chen-Xian & Li, Ke-Jun & Li, Ming-Yang, 2021. "Economic scheduling of compressed natural gas main station considering critical peak pricing," Applied Energy, Elsevier, vol. 292(C).
    18. Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
    19. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    20. Osorio-Tejada, Jose Luis & Llera-Sastresa, Eva & Scarpellini, Sabina, 2017. "Liquefied natural gas: Could it be a reliable option for road freight transport in the EU?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 785-795.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:124:y:2019:i:c:p:108-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.