IDEAS home Printed from https://ideas.repec.org/r/bla/mathfi/v1y1991i4p39-55.html
   My bibliography  Save this item

Option Pricing With V. G. Martingale Components1

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Vladimir K. Kaishev & Dimitrina S. Dimitrova, 2009. "Dirichlet Bridge Sampling for the Variance Gamma Process: Pricing Path-Dependent Options," Management Science, INFORMS, vol. 55(3), pages 483-496, March.
  2. Giorgia Callegaro & Lucio Fiorin & Martino Grasselli, 2019. "Quantization meets Fourier: a new technology for pricing options," Annals of Operations Research, Springer, vol. 282(1), pages 59-86, November.
  3. Olivier Le Courtois, 2018. "Some Further Results on the Tempered Multistable Approach," Post-Print hal-02312142, HAL.
  4. Kim, In Joon & Kim, Sol, 2004. "Empirical comparison of alternative stochastic volatility option pricing models: Evidence from Korean KOSPI 200 index options market," Pacific-Basin Finance Journal, Elsevier, vol. 12(2), pages 117-142, April.
  5. Jean-Luc Prigent, 2001. "Option Pricing with a General Marked Point Process," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 50-66, February.
  6. Gourieroux, C. & Monfort, A., 2007. "Econometric specification of stochastic discount factor models," Journal of Econometrics, Elsevier, vol. 136(2), pages 509-530, February.
  7. Tat Lung Chan, 2017. "Singular Fourier-Pad\'e Series Expansion of European Option Prices," Papers 1706.06709, arXiv.org, revised Nov 2017.
  8. Olivia Andreea Baciu, 2015. "Generalized Hyperbolic Distributions: Empirical Evidence on Bucharest Stock Exchange," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 7(1), pages 007-018, June.
  9. Don M. Chance & Eric Hillebrand & Jimmy E. Hilliard, 2008. "Pricing an Option on Revenue from an Innovation: An Application to Movie Box Office Revenue," Management Science, INFORMS, vol. 54(5), pages 1015-1028, May.
  10. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
  11. León, à ngel & Mencía, Javier & Sentana, Enrique, 2009. "Parametric Properties of Semi-Nonparametric Distributions, with Applications to Option Valuation," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 176-192.
  12. Weng, Chengguo, 2013. "Constant proportion portfolio insurance under a regime switching exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 508-521.
  13. Chan, Tat Lung (Ron), 2020. "Hedging and pricing early-exercise options with complex fourier series expansion," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
  14. Tomáš Tichý, 2010. "Posouzení odhadu měnového rizika portfolia pomocí Lévyho modelů [Examination of Portfolio Currency Risk Estimation by Means of Lévy Models]," Politická ekonomie, Prague University of Economics and Business, vol. 2010(4), pages 504-521.
  15. Claudia Yeap & Simon S Kwok & S T Boris Choy, 2018. "A Flexible Generalized Hyperbolic Option Pricing Model and Its Special Cases," Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 425-460.
  16. Masahiko Egami & Kazutoshi Yamazaki, 2010. "Solving Optimal Dividend Problems via Phase-Type Fitting Approximation of Scale Functions," Discussion papers e-10-011, Graduate School of Economics Project Center, Kyoto University.
  17. George Bouzianis & Lane P. Hughston, 2019. "Determination Of The Lévy Exponent In Asset Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, February.
  18. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2023. "Efficient inverse $Z$-transform: sufficient conditions," Papers 2305.10725, arXiv.org.
  19. Ballotta, Laura, 2005. "A Lévy process-based framework for the fair valuation of participating life insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 173-196, October.
  20. Akira Yamazaki, 2014. "Pricing average options under time-changed Lévy processes," Review of Derivatives Research, Springer, vol. 17(1), pages 79-111, April.
  21. Marco Bee & Maria Michela Dickson & Flavio Santi, 2018. "Likelihood-based risk estimation for variance-gamma models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 69-89, March.
  22. Colino, Jesús P., 2008. "New stochastic processes to model interest rates : LIBOR additive processes," DES - Working Papers. Statistics and Econometrics. WS ws085316, Universidad Carlos III de Madrid. Departamento de Estadística.
  23. Roman V. Ivanov & Katsunori Ano, 2016. "On exact pricing of FX options in multivariate time-changed Lévy models," Review of Derivatives Research, Springer, vol. 19(3), pages 201-216, October.
  24. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
  25. Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
  26. Pagnoncelli, Bernardo K. & Vanduffel, Steven, 2012. "A provisioning problem with stochastic payments," European Journal of Operational Research, Elsevier, vol. 221(2), pages 445-453.
  27. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
  28. Olivier Courtois, 2018. "Some Further Results on the Tempered Multistable Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 25(2), pages 87-109, June.
  29. Akira Yamazaki, 2016. "Generalized Barndorff-Nielsen And Shephard Model And Discretely Monitored Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-34, June.
  30. Hatem Ben‐Ameur & Rim Chérif & Bruno Rémillard, 2020. "Dynamic programming for valuing American options under a variance‐gamma process," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1548-1561, October.
  31. Ghysels, E. & Jasiak, J., 1994. "Stochastic Volatility and time Deformation: an Application of trading Volume and Leverage Effects," Cahiers de recherche 9403, Universite de Montreal, Departement de sciences economiques.
  32. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
  33. Roman V. Ivanov, 2018. "Option Pricing In The Variance-Gamma Model Under The Drift Jump," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-19, June.
  34. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
  35. Lloyd Blenman & Steven Clark, 2005. "Options with Constant Underlying Elasticity in Strikes," Review of Derivatives Research, Springer, vol. 8(2), pages 67-83, August.
  36. Roman Ivanov, 2015. "The distribution of the maximum of a variance gamma process and path-dependent option pricing," Finance and Stochastics, Springer, vol. 19(4), pages 979-993, October.
  37. Ming-Chieh Wang & Li-Jhang Huang, 2019. "Pricing cross-currency interest rate swaps under the Levy market model," Review of Derivatives Research, Springer, vol. 22(2), pages 329-355, July.
  38. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.
  39. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
  40. Jacques Pézier & Johanna Scheller, 2011. "A Comprehensive Evaluation of Portfolio Insurance Strategies," ICMA Centre Discussion Papers in Finance icma-dp2011-15, Henley Business School, University of Reading.
  41. Tahir Choulli & Ella Elazkany & Mich`ele Vanmaele, 2024. "The second-order Esscher martingale densities for continuous-time market models," Papers 2407.03960, arXiv.org.
  42. Le Courtois, Olivier & Menoncin, Francesco, 2015. "Portfolio optimisation with jumps: Illustration with a pension accumulation scheme," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 127-137.
  43. Laura Ballotta, 2009. "Pricing and capital requirements for with profit contracts: modelling considerations," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 803-817.
  44. repec:dau:papers:123456789/1392 is not listed on IDEAS
  45. Jos'e E. Figueroa-L'opez & Ruoting Gong & Christian Houdr'e, 2012. "High-order short-time expansions for ATM option prices of exponential L\'evy models," Papers 1208.5520, arXiv.org, revised Apr 2014.
  46. Buckley, Winston & Long, Hongwei & Perera, Sandun, 2014. "A jump model for fads in asset prices under asymmetric information," European Journal of Operational Research, Elsevier, vol. 236(1), pages 200-208.
  47. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
  48. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
  49. Jos'e E. Figueroa-L'opez & Ruoting Gong & Christian Houdr'e, 2011. "High-order short-time expansions for ATM option prices under the CGMY model," Papers 1112.3111, arXiv.org, revised Aug 2012.
  50. Gian Luca Tassinari & Corrado Corradi, 2013. "Pricing equity and debt tranches of collateralized funds of hedge fund obligations: An approach based on stochastic time change and Esscher-transformed martingale measure," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1991-2010, December.
  51. Aleš Černý, 2007. "Optimal Continuous‐Time Hedging With Leptokurtic Returns," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 175-203, April.
  52. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "L\'evy models amenable to efficient calculations," Papers 2207.02359, arXiv.org.
  53. Salem, Marwa Belhaj & Fouladirad, Mitra & Deloux, Estelle, 2022. "Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
  54. Ivanov Roman V., 2018. "On risk measuring in the variance-gamma model," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 23-33, January.
  55. Laura Ballota & Griselda Deelstra & Grégory Rayée, 2015. "Quanto Implied Correlation in a Multi-Lévy Framework," Working Papers ECARES ECARES 2015-36, ULB -- Universite Libre de Bruxelles.
  56. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
  57. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
  58. Egami, Masahiko & Leung, Tim & Yamazaki, Kazutoshi, 2013. "Default swap games driven by spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 347-384.
  59. Fiorani, Filo, 2004. "Option Pricing Under the Variance Gamma Process," MPRA Paper 15395, University Library of Munich, Germany.
  60. Oscar Gutierrez, 2008. "Option valuation, time-changed processes and the fast Fourier transform," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 103-108.
  61. Evis Këllezi & Nick Webber, 2004. "Valuing Bermudan options when asset returns are Levy processes," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 87-100.
  62. Li, Minqiang & Peng, Liang & Qi, Yongcheng, 2011. "Reduce computation in profile empirical likelihood method," MPRA Paper 33744, University Library of Munich, Germany.
  63. Askari, Hossein & Krichene, Noureddine, 2008. "Oil price dynamics (2002-2006)," Energy Economics, Elsevier, vol. 30(5), pages 2134-2153, September.
  64. Nicola Cantarutti & Jo~ao Guerra, 2016. "Multinomial method for option pricing under Variance Gamma," Papers 1701.00112, arXiv.org, revised Feb 2018.
  65. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
  66. Athanassios N. Avramidis & Pierre L'Ecuyer, 2006. "Efficient Monte Carlo and Quasi-Monte Carlo Option Pricing Under the Variance Gamma Model," Management Science, INFORMS, vol. 52(12), pages 1930-1944, December.
  67. Yuanda Chen & Zailei Cheng & Haixu Wang, 2023. "Option Pricing for the Variance Gamma Model: A New Perspective," Papers 2306.10659, arXiv.org.
  68. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
  69. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
  70. Duan, Jin-Chuan & Zhang, Hua, 2001. "Pricing Hang Seng Index options around the Asian financial crisis - A GARCH approach," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1989-2014, November.
  71. Lingyan Cao & Zheng-Feng Guo, 2012. "A Comparison Of Gradient Estimation Techniques For European Call Options," Accounting & Taxation, The Institute for Business and Finance Research, vol. 4(1), pages 75-81.
  72. Tat Lung & Chan, 2019. "An SFP--FCC Method for Pricing and Hedging Early-exercise Options under L\'evy Processes," Papers 1909.07319, arXiv.org.
  73. Jiling Cao & Xinfeng Ruan & Shu Su & Wenjun Zhang, 2020. "Pricing VIX derivatives with infinite‐activity jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 329-354, March.
  74. Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
  75. Dilip B. Madan & Robert J. Elliott, 2009. "Multiple Priors and Asset Pricing," Methodology and Computing in Applied Probability, Springer, vol. 11(2), pages 211-229, June.
  76. Liming Feng & Vadim Linetsky, 2008. "Pricing Options in Jump-Diffusion Models: An Extrapolation Approach," Operations Research, INFORMS, vol. 56(2), pages 304-325, April.
  77. Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2019. "Advanced model calibration on bitcoin options," Digital Finance, Springer, vol. 1(1), pages 117-137, November.
  78. Erdinc Akyildirim & Alper A. Hekimoglu & Ahmet Sensoy & Frank J. Fabozzi, 2023. "Extending the Merton model with applications to credit value adjustment," Annals of Operations Research, Springer, vol. 326(1), pages 27-65, July.
  79. Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2021. "Stochastic measure distortions induced by quantile processes for risk quantification and valuation," Papers 2201.02045, arXiv.org.
  80. Ron Chan & Simon Hubbert, 2014. "Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme," Review of Derivatives Research, Springer, vol. 17(2), pages 161-189, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.