IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.03960.html
   My bibliography  Save this paper

The second-order Esscher martingale densities for continuous-time market models

Author

Listed:
  • Tahir Choulli
  • Ella Elazkany
  • Mich`ele Vanmaele

Abstract

In this paper, we introduce the second-order Esscher pricing notion for continuous-time models. Depending whether the stock price $S$ or its logarithm is the main driving noise/shock in the Esscher definition, we obtained two classes of second-order Esscher densities called linear class and exponential class respectively. Using the semimartingale characteristics to parametrize $S$, we characterize the second-order Esscher densities (exponential and linear) using pointwise equations. The role of the second order concept is highlighted in many manners and the relationship between the two classes is singled out for the one-dimensional case. Furthermore, when $S$ is a compound Poisson model, we show how both classes are related to the Delbaen-Haenzendonck's risk-neutral measure. Afterwards, we restrict our model $S$ to follow the jump-diffusion model, for simplicity only, and address the bounds of the stochastic Esscher pricing intervals. In particular, no matter what is the Esscher class, we prove that both bounds (upper and lower) are solutions to the same linear backward stochastic differential equation (BSDE hereafter for short) but with two different constraints. This shows that BSDEs with constraints appear also in a setting beyond the classical cases of constraints on gain-processes or constraints on portfolios. We prove that our resulting constrained BSDEs have solutions in our framework for a large class of claims' payoffs including any bounded claim, in contrast to the literature, and we single out the monotonic sequence of BSDEs that ``naturally" approximate it as well.

Suggested Citation

  • Tahir Choulli & Ella Elazkany & Mich`ele Vanmaele, 2024. "The second-order Esscher martingale densities for continuous-time market models," Papers 2407.03960, arXiv.org.
  • Handle: RePEc:arx:papers:2407.03960
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.03960
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Badescu, Alex & Elliott, Robert J. & Siu, Tak Kuen, 2009. "Esscher transforms and consumption-based models," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 337-347, December.
    3. Monfort, Alain & Pegoraro, Fulvio, 2012. "Asset pricing with Second-Order Esscher Transforms," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1678-1687.
    4. Albert N. Shiryaev & Jan Kallsen, 2002. "The cumulant process and Esscher's change of measure," Finance and Stochastics, Springer, vol. 6(4), pages 397-428.
    5. Gerber, Hans U. & Shiu, Elias S. W., 1996. "Actuarial bridges to dynamic hedging and option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 18(3), pages 183-218, November.
    6. Tahir Choulli & Christophe Stricker & Jia Li, 2007. "Minimal Hellinger martingale measures of order q," Finance and Stochastics, Springer, vol. 11(3), pages 399-427, July.
    7. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components1," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 39-55, October.
    8. Wenhan Li & Lixia Liu & Guiwen Lv & Cuixiang Li, 2018. "Exchange option pricing in jump-diffusion models based on esscher transform," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(19), pages 4661-4672, October.
    9. Lau, John W. & Siu, Tak Kuen, 2008. "On option pricing under a completely random measure via a generalized Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 99-107, August.
    10. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2017. "No-arbitrage up to random horizon for quasi-left-continuous models," Finance and Stochastics, Springer, vol. 21(4), pages 1103-1139, October.
    11. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Working Paper 1159, Economics Department, Queen's University.
    12. Gerber, Hans U. & Shiu, Elias S.W., 1994. "Martingale Approach to Pricing Perpetual American Options," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 195-220, November.
    13. Monoyios, Michael, 2007. "The minimal entropy measure and an Esscher transform in an incomplete market model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1070-1076, June.
    14. Tak Kuen Siu & Howell Tong & Hailiang Yang, 2001. "Bayesian Risk Measures for Derivatives via Random Esscher Transform," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(3), pages 78-91.
    15. Tahir Choulli & Christophe Stricker, 2006. "More On Minimal Entropy–Hellinger Martingale Measure," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 1-19, January.
    16. Bühlmann, Hans & Delbaen, Freddy & Embrechts, Paul & Shiryaev, Albert N., 1998. "On Esscher Transforms in Discrete Finance Models," ASTIN Bulletin, Cambridge University Press, vol. 28(2), pages 171-186, November.
    17. Tahir Choulli & Jun Deng & Junfeng Ma, 2015. "How non-arbitrage, viability and numéraire portfolio are related," Finance and Stochastics, Springer, vol. 19(4), pages 719-741, October.
    18. Walter Schachermayer & Josef Teichmann, 2008. "How Close Are The Option Pricing Formulas Of Bachelier And Black–Merton–Scholes?," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 155-170, January.
    19. R. J. Elliott & T. K. Siu, 2022. "A generalized Esscher transform for option valuation with regime switching risk," Quantitative Finance, Taylor & Francis Journals, vol. 22(4), pages 691-705, April.
    20. Friedrich Hubalek & Carlo Sgarra, 2006. "Esscher transforms and the minimal entropy martingale measure for exponential Levy models," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 125-145.
    21. Lepeltier, J.-P. & Xu, M., 2005. "Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 58-66, November.
    22. Tahir Choulli & Christophe Stricker, 2005. "Minimal Entropy–Hellinger Martingale Measure In Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 465-490, July.
    23. Alessandro Bondi & Dragana Radojičić & Thorsten Rheinländer, 2020. "Comparing Two Different Option Pricing Methods," Risks, MDPI, vol. 8(4), pages 1-28, October.
    24. Wissem Boughamoura & Faouzi Trabelsi, 2014. "On two-parametric Esscher transform for geometric CGMY Lévy processes," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 19(3), pages 280-301.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahir Choulli & Sina Yansori, 2018. "Explicit description of all deflators for market models under random horizon with applications to NFLVR," Papers 1803.10128, arXiv.org, revised Feb 2021.
    2. Laura Ballotta, 2009. "Pricing and capital requirements for with profit contracts: modelling considerations," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 803-817.
    3. Tahir Choulli & Sina Yansori, 2018. "Log-optimal portfolio and num\'eraire portfolio for market models stopped at a random time," Papers 1810.12762, arXiv.org, revised Aug 2020.
    4. Hubalek, Friedrich & Sgarra, Carlo, 2009. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2137-2157, July.
    5. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062.
    6. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    7. Siu, Tak Kuen, 2023. "European option pricing with market frictions, regime switches and model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 233-250.
    8. Laura Ballota & Griselda Deelstra & Grégory Rayée, 2015. "Quanto Implied Correlation in a Multi-Lévy Framework," Working Papers ECARES ECARES 2015-36, ULB -- Universite Libre de Bruxelles.
    9. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    10. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    11. León, à ngel & Mencía, Javier & Sentana, Enrique, 2009. "Parametric Properties of Semi-Nonparametric Distributions, with Applications to Option Valuation," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 176-192.
    12. George Bouzianis & Lane P. Hughston, 2019. "Determination Of The Lévy Exponent In Asset Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, February.
    13. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    14. Gourieroux, C. & Monfort, A., 2007. "Econometric specification of stochastic discount factor models," Journal of Econometrics, Elsevier, vol. 136(2), pages 509-530, February.
    15. S. Cawston & L. Vostrikova, 2010. "$F$-divergence minimal equivalent martingale measures and optimal portfolios for exponential Levy models with a change-point," Papers 1004.3525, arXiv.org, revised Jun 2011.
    16. Oscar Gutierrez, 2008. "Option valuation, time-changed processes and the fast Fourier transform," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 103-108.
    17. Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2019. "Advanced model calibration on bitcoin options," Digital Finance, Springer, vol. 1(1), pages 117-137, November.
    18. Choulli, Tahir & Vandaele, Nele & Vanmaele, Michèle, 2010. "The Föllmer-Schweizer decomposition: Comparison and description," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 853-872, June.
    19. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    20. Roman Ivanov, 2015. "The distribution of the maximum of a variance gamma process and path-dependent option pricing," Finance and Stochastics, Springer, vol. 19(4), pages 979-993, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.03960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.