IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/15395.html
   My bibliography  Save this paper

Option Pricing Under the Variance Gamma Process

Author

Listed:
  • Fiorani, Filo

Abstract

In this dissertation we price European and American vanilla and barrier options assuming that the underlying follows the variance gamma process. We solve numerically the problem implementing a finite difference algorithm and we present numerical experiments on the option pricing. This dissertation includes detailed algorithms as well as programming code in C++ to price European and American vanilla and barrier options under variance gamma.

Suggested Citation

  • Fiorani, Filo, 2004. "Option Pricing Under the Variance Gamma Process," MPRA Paper 15395, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:15395
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/15395/1/MPRA_paper_15395.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components1," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 39-55, October.
    3. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Working Paper 1159, Economics Department, Queen's University.
    4. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    5. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    6. Geman, Helyette, 2002. "Pure jump Levy processes for asset price modelling," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1297-1316, July.
    7. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    8. Thierry Ané & Hélyette Geman, 2000. "Order Flow, Transaction Clock, and Normality of Asset Returns," Journal of Finance, American Finance Association, vol. 55(5), pages 2259-2284, October.
    9. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    10. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.
    11. repec:dau:papers:123456789/1392 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricardo Crisóstomo, 2017. "Speed and biases of Fourier-based pricing choices: Analysis of the Bates and Asymmetric Variance Gamma models," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    2. Marwa Belhaj Salem & Mitra Fouladirad & Estelle Deloux, 2021. "Prognostic and Classification of Dynamic Degradation in a Mechanical System Using Variance Gamma Process," Mathematics, MDPI, vol. 9(3), pages 1-25, January.
    3. John Angle, 2023. "Generalizing the Inequality Process’ gamma model of particle wealth statistics," The Journal of Mathematical Sociology, Taylor & Francis Journals, vol. 47(3), pages 227-243, July.
    4. Jakub Drahokoupil, 2020. "Variance Gamma process in the option pricing model," FFA Working Papers 3.002, Prague University of Economics and Business, revised 31 Jan 2021.
    5. Salem, Marwa Belhaj & Fouladirad, Mitra & Deloux, Estelle, 2022. "Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    6. Takayuki Sakuma & Yuji Yamada, 2014. "Application of Homotopy Analysis Method to Option Pricing Under Lévy Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(1), pages 1-14, March.
    7. Filippo Fiorani & Elisa Luciano, 2006. "Credit risk in pure jump structural models," ICER Working Papers - Applied Mathematics Series 6-2006, ICER - International Centre for Economic Research.
    8. Ulze, Markus & Stadler, Johannes & Rathgeber, Andreas W., 2021. "No country for old distributions? On the comparison of implied option parameters between the Brownian motion and variance gamma process," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 163-184.
    9. Hitaj, Asmerilda & Mercuri, Lorenzo & Rroji, Edit, 2015. "Portfolio selection with independent component analysis," Finance Research Letters, Elsevier, vol. 15(C), pages 146-159.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Tat Lung (Ron), 2020. "Hedging and pricing early-exercise options with complex fourier series expansion," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    2. Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
    3. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    4. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    5. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
    6. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    7. Evis Këllezi & Nick Webber, 2004. "Valuing Bermudan options when asset returns are Levy processes," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 87-100.
    8. Roman Ivanov, 2015. "The distribution of the maximum of a variance gamma process and path-dependent option pricing," Finance and Stochastics, Springer, vol. 19(4), pages 979-993, October.
    9. Laura Ballota & Griselda Deelstra & Grégory Rayée, 2015. "Quanto Implied Correlation in a Multi-Lévy Framework," Working Papers ECARES ECARES 2015-36, ULB -- Universite Libre de Bruxelles.
    10. Mr. Noureddine Krichene, 2006. "Recent Dynamics of Crude Oil Prices," IMF Working Papers 2006/299, International Monetary Fund.
    11. Colino, Jesús P., 2008. "New stochastic processes to model interest rates : LIBOR additive processes," DES - Working Papers. Statistics and Econometrics. WS ws085316, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    13. George Bouzianis & Lane P. Hughston, 2019. "Determination Of The Lévy Exponent In Asset Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, February.
    14. Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
    15. Hatem Ben‐Ameur & Rim Chérif & Bruno Rémillard, 2020. "Dynamic programming for valuing American options under a variance‐gamma process," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1548-1561, October.
    16. Athanassios N. Avramidis & Pierre L'Ecuyer, 2006. "Efficient Monte Carlo and Quasi-Monte Carlo Option Pricing Under the Variance Gamma Model," Management Science, INFORMS, vol. 52(12), pages 1930-1944, December.
    17. Jakša Cvitanić & Vassilis Polimenis & Fernando Zapatero, 2008. "Optimal portfolio allocation with higher moments," Annals of Finance, Springer, vol. 4(1), pages 1-28, January.
    18. Wendong Zheng & Chi Hung Yuen & Yue Kuen Kwok, 2016. "Recursive Algorithms For Pricing Discrete Variance Options And Volatility Swaps Under Time-Changed Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-29, March.
    19. Claudia Yeap & Simon S Kwok & S T Boris Choy, 2018. "A Flexible Generalized Hyperbolic Option Pricing Model and Its Special Cases," Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 425-460.
    20. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.

    More about this item

    Keywords

    Variance Gamma Process; Option Pricing Under Variance Gamma; Numerical Solution of Option Prices Under Variance Gamma; Numerical Solution of Variance Gamma PIDE; Numerical Solutions of Variance Gamma Partial Differential Equation; Programming Code for Variance Gamma Option Pricing;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:15395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.