IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.10725.html
   My bibliography  Save this paper

Efficient inverse $Z$-transform: sufficient conditions

Author

Listed:
  • Svetlana Boyarchenko
  • Sergei Levendorskiu{i}

Abstract

We derive several sets of sufficient conditions for applicability of the new efficient numerical realization of the inverse $Z$-transform. For large $n$, the complexity of the new scheme is dozens of times smaller than the complexity of the trapezoid rule. As applications, pricing of European options and single barrier options with discrete monitoring are considered; applications to more general options with barrier-lookback features are outlined. In the case of sectorial transition operators, hence, for symmetric L\'evy models, the proof is straightforward. In the case of non-symmetric L\'evy models, we construct a non-linear deformation of the dual space, which makes the transition operator sectorial, with an arbitrary small opening angle, and justify the new realization. We impose mild conditions which are satisfied for wide classes of non-symmetric Stieltjes-L\'evy processes.

Suggested Citation

  • Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2023. "Efficient inverse $Z$-transform: sufficient conditions," Papers 2305.10725, arXiv.org.
  • Handle: RePEc:arx:papers:2305.10725
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.10725
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2020. "Static and semistatic hedging as contrarian or conformist bets," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 921-960, July.
    2. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components1," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 39-55, October.
    3. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient inverse $Z$-transform and pricing barrier and lookback options with discrete monitoring," Papers 2207.02858, arXiv.org, revised Jul 2022.
    4. O.E. Barndorff-Nielsen & S.Z. Levendorskii, 2001. "Feller processes of normal inverse Gaussian type," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 318-331, March.
    5. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Working Paper 1159, Economics Department, Queen's University.
    6. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    7. Svetlana I. Boyarchenko & Sergei Z. Levendorskiǐ, 2000. "Option Pricing For Truncated Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 549-552.
    8. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    9. Sergei Levendorskiĭ, 2012. "Efficient Pricing And Reliable Calibration In The Heston Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(07), pages 1-44.
    10. Gianluca Fusai & I. Abrahams & Carlo Sgarra, 2006. "An exact analytical solution for discrete barrier options," Finance and Stochastics, Springer, vol. 10(1), pages 1-26, January.
    11. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    12. S. I. Boyarchenko & S. Z. Levendorskii, 2002. "Pricing of perpetual Bermudan options," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 432-442.
    13. Svetlana I Boyarchenko & Sergei Z Levendorskii, 2002. "Non-Gaussian Merton-Black-Scholes Theory," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4955, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "L\'evy models amenable to efficient calculations," Papers 2207.02359, arXiv.org.
    2. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    3. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient inverse $Z$-transform and pricing barrier and lookback options with discrete monitoring," Papers 2207.02858, arXiv.org, revised Jul 2022.
    4. Svetlana Boyarchenko & Sergei Levendorskiä¬ & J. Lars Kyrkby & Zhenyu Cui, 2021. "Sinh-Acceleration For B-Spline Projection With Option Pricing Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(08), pages 1-50, December.
    5. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Efficient evaluation of joint pdf of a L\'evy process, its extremum, and hitting time of the extremum," Papers 2312.05222, arXiv.org.
    6. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient evaluation of double-barrier options and joint cpdf of a L\'evy process and its two extrema," Papers 2211.07765, arXiv.org.
    7. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2024. "Efficient inverse $Z$-transform and Wiener-Hopf factorization," Papers 2404.19290, arXiv.org, revised May 2024.
    8. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Alternative models for FX, arbitrage opportunities and efficient pricing of double barrier options in L\'evy models," Papers 2312.03915, arXiv.org.
    9. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient evaluation of expectations of functions of a stable L\'evy process and its extremum," Papers 2209.12349, arXiv.org.
    10. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    11. Chan, Tat Lung (Ron), 2020. "Hedging and pricing early-exercise options with complex fourier series expansion," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    12. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2020. "Static and semistatic hedging as contrarian or conformist bets," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 921-960, July.
    13. Tat Lung & Chan, 2019. "An SFP--FCC Method for Pricing and Hedging Early-exercise Options under L\'evy Processes," Papers 1909.07319, arXiv.org.
    14. Sergei Levendorskiĭ, 2022. "Operators and Boundary Problems in Finance, Economics and Insurance: Peculiarities, Efficient Methods and Outstanding Problems," Mathematics, MDPI, vol. 10(7), pages 1-36, March.
    15. Oscar Gutierrez, 2008. "Option valuation, time-changed processes and the fast Fourier transform," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 103-108.
    16. Young Shin Kim, 2019. "Tempered stable process, first passage time, and path-dependent option pricing," Computational Management Science, Springer, vol. 16(1), pages 187-215, February.
    17. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    18. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    19. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2019. "Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models," Papers 1912.06948, arXiv.org, revised Dec 2019.
    20. Ron Chan & Simon Hubbert, 2014. "Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme," Review of Derivatives Research, Springer, vol. 17(2), pages 161-189, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.10725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.