IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v60y2015icp127-137.html
   My bibliography  Save this article

Portfolio optimisation with jumps: Illustration with a pension accumulation scheme

Author

Listed:
  • Le Courtois, Olivier
  • Menoncin, Francesco

Abstract

In this paper, we address portfolio optimisation when stock prices follow general Lévy processes in the context of a pension accumulation scheme. The optimal portfolio weights are obtained in quasi-closed form and the optimal consumption in closed form. To solve the optimisation problem, we show how to switch back and forth between the stochastic differential and standard exponentials of the Lévy processes. We apply this procedure to both the Variance Gamma process and a Lévy process whose arrival rate of jumps exponentially decreases with size. We show through a numerical example that when jumps, and therefore asymmetry and leptokurtosis, are suitably taken into account, then the optimal portfolio share of the risky asset is around half that obtained in the Gaussian framework.

Suggested Citation

  • Le Courtois, Olivier & Menoncin, Francesco, 2015. "Portfolio optimisation with jumps: Illustration with a pension accumulation scheme," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 127-137.
  • Handle: RePEc:eee:jbfina:v:60:y:2015:i:c:p:127-137
    DOI: 10.1016/j.jbankfin.2015.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426615002125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2015.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2010. "Optimal asset allocation for aggregated defined benefit pension funds with stochastic interest rates," European Journal of Operational Research, Elsevier, vol. 201(1), pages 211-221, February.
    3. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components1," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 39-55, October.
    4. Hainaut, Donatien & Deelstra, Griselda, 2011. "Optimal funding of defined benefit pension plans," Journal of Pension Economics and Finance, Cambridge University Press, vol. 10(1), pages 31-52, January.
    5. J. S. Kennedy & P. A. Forsyth & K. R. Vetzal, 2009. "Dynamic Hedging Under Jump Diffusion with Transaction Costs," Operations Research, INFORMS, vol. 57(3), pages 541-559, June.
    6. Paolo Battocchio & Francesco Menoncin & Olivier Scaillet, 2007. "Optimal asset allocation for pension funds under mortality risk during the accumulation and decumulation phases," Annals of Operations Research, Springer, vol. 152(1), pages 141-165, July.
    7. Jun Liu & Francis A. Longstaff & Jun Pan, 2003. "Dynamic Asset Allocation with Event Risk," Journal of Finance, American Finance Association, vol. 58(1), pages 231-259, February.
    8. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    9. Yacine Aït-Sahalia & Thomas Robert Hurd, 2016. "Portfolio Choice in Markets with Contagion," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 1-28.
    10. Kristin Reikvam & Fred Espen Benth & Kenneth Hvistendahl Karlsen, 2001. "Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: A viscosity solution approach," Finance and Stochastics, Springer, vol. 5(3), pages 275-303.
    11. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    12. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Working Paper 1159, Economics Department, Queen's University.
    13. Svetlozar Rachev & Seonkoo Han, 2000. "Portfolio management with stable distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(2), pages 341-352, April.
    14. Framstad, Nils Chr. & Oksendal, Bernt & Sulem, Agnes, 2001. "Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 233-257, April.
    15. Trostel, Philip A & Taylor, Grant A, 2001. "A Theory of Time Preference," Economic Inquiry, Western Economic Association International, vol. 39(3), pages 379-395, July.
    16. de Athayde, Gustavo M. & Flores, Renato Jr., 2004. "Finding a maximum skewness portfolio--a general solution to three-moments portfolio choice," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1335-1352, April.
    17. Alessandro Bucciol & Raffaele Miniaci, 2011. "Household Portfolios and Implicit Risk Preference," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1235-1250, November.
    18. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2012. "Stochastic pension funding when the benefit and the risky asset follow jump diffusion processes," European Journal of Operational Research, Elsevier, vol. 220(2), pages 404-413.
    19. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    20. Moshe Arye Milevsky, 2001. "Optimal Annuitization Policies," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(1), pages 57-69.
    21. Kristin Reikvam & Fred Espen Benth & Kenneth Hvistendahl Karlsen, 2001. "Optimal portfolio management rules in a non-Gaussian market with durability and intertemporal substitution," Finance and Stochastics, Springer, vol. 5(4), pages 447-467.
    22. Milevsky,Moshe A., 2006. "The Calculus of Retirement Income," Cambridge Books, Cambridge University Press, number 9780521842587.
    23. Jan Kallsen, 2000. "Optimal portfolios for exponential Lévy processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 357-374, August.
    24. Vigna, Elena & Haberman, Steven, 2001. "Optimal investment strategy for defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 233-262, April.
    25. Fred Espen Benth & Kenneth Hvistendahl Karlsen & Kristin Reikvam, 2001. "A Note On Portfolio Management Under Non-Gaussian Logreturns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(05), pages 711-731.
    26. Aase, Knut K. & Øksendal, Bernt, 1988. "Admissible investment strategies in continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 30(2), pages 291-301, December.
    27. Jakša Cvitanić & Vassilis Polimenis & Fernando Zapatero, 2008. "Optimal portfolio allocation with higher moments," Annals of Finance, Springer, vol. 4(1), pages 1-28, January.
    28. Haberman, Steven & Sung, Joo-Ho, 1994. "Dynamic approaches to pension funding," Insurance: Mathematics and Economics, Elsevier, vol. 15(2-3), pages 151-162, December.
    29. Susanne Emmer & Claudia Klüppelberg, 2004. "Optimal portfolios when stock prices follow an exponential Lévy process," Finance and Stochastics, Springer, vol. 8(1), pages 17-44, January.
    30. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    31. Battocchio, Paolo & Menoncin, Francesco, 2004. "Optimal pension management in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 79-95, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2019. "Equilibrium strategies in a defined benefit pension plan game," European Journal of Operational Research, Elsevier, vol. 275(1), pages 374-386.
    2. Josa-Fombellida, Ricardo & López-Casado, Paula & Rincón-Zapatero, Juan Pablo, 2018. "Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 73-86.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Guerra & Manuel Guerra & Zachary Polaski, 2019. "Market Timing with Option-Implied Distributions in an Exponentially Tempered Stable Lévy Market," Working Papers REM 2019/74, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    2. Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
    3. Aït-Sahalia, Yacine & Matthys, Felix, 2019. "Robust consumption and portfolio policies when asset prices can jump," Journal of Economic Theory, Elsevier, vol. 179(C), pages 1-56.
    4. Weng, Chengguo, 2013. "Constant proportion portfolio insurance under a regime switching exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 508-521.
    5. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    6. Laura Ballotta, 2009. "Pricing and capital requirements for with profit contracts: modelling considerations," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 803-817.
    7. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
    8. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    9. Laura Pasin & Tiziano Vargiolu, 2010. "Optimal Portfolio for CRRA Utility Functions when Risky Assets are Exponential Additive Processes," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 39(1‐2), pages 65-90, February.
    10. Vladimir K. Kaishev & Dimitrina S. Dimitrova, 2009. "Dirichlet Bridge Sampling for the Variance Gamma Process: Pricing Path-Dependent Options," Management Science, INFORMS, vol. 55(3), pages 483-496, March.
    11. Fiorani, Filo, 2004. "Option Pricing Under the Variance Gamma Process," MPRA Paper 15395, University Library of Munich, Germany.
    12. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    13. Buckley, Winston & Long, Hongwei & Perera, Sandun, 2014. "A jump model for fads in asset prices under asymmetric information," European Journal of Operational Research, Elsevier, vol. 236(1), pages 200-208.
    14. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    15. George Bouzianis & Lane P. Hughston, 2019. "Determination Of The Lévy Exponent In Asset Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, February.
    16. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    17. Athanassios N. Avramidis & Pierre L'Ecuyer, 2006. "Efficient Monte Carlo and Quasi-Monte Carlo Option Pricing Under the Variance Gamma Model," Management Science, INFORMS, vol. 52(12), pages 1930-1944, December.
    18. Yacine Aït-Sahalia & Thomas Robert Hurd, 2016. "Portfolio Choice in Markets with Contagion," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 1-28.
    19. Chan, Tat Lung (Ron), 2020. "Hedging and pricing early-exercise options with complex fourier series expansion," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    20. Jakša Cvitanić & Vassilis Polimenis & Fernando Zapatero, 2008. "Optimal portfolio allocation with higher moments," Annals of Finance, Springer, vol. 4(1), pages 1-28, January.

    More about this item

    Keywords

    Optimal portfolio; Lévy process; Stochastic exponential; Pension fund;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:60:y:2015:i:c:p:127-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.