IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v74y2024ics106294082400158x.html
   My bibliography  Save this article

Closed-form approximations for basket option pricing under normal tempered stable Lévy model

Author

Listed:
  • Hu, Dongdong
  • Sayit, Hasanjan
  • Yao, Jing
  • Zhong, Qifeng

Abstract

In this paper, we study the pricing problems of basket options and spread options under the Normal Tempered Stable Lévy model, which is a general model for financial assets and covers many well-known models as special cases such as the Variance Gamma model, Normal Inverse Gaussian model etc. Our approach draws inspiration from the lower bound approximation strategy used in Gaussian models in Bjerksund and Stensland (2014). The approximation formula we derived involves some one-dimensional integrations. We calculate these integrals using the generalized Gauss–Laguerre quadrature rule and Taylor expansion methods. In particular, we derive an analytical approximation formula under the Variance Gamma model for some exchange options. Moreover, we extend the approximation formulas proposed by Kirk (1995) and Carmona and Durrleman (2003b) to the Normal Tempered Stable Lévy model. Numerical tests show that our approximation formulas are highly accurate. Furthermore, we show that our approximation formulas outperform the Fourier inversion method introduced by Caldana et al. (2016) in accuracy, especially for low prices cases.

Suggested Citation

  • Hu, Dongdong & Sayit, Hasanjan & Yao, Jing & Zhong, Qifeng, 2024. "Closed-form approximations for basket option pricing under normal tempered stable Lévy model," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
  • Handle: RePEc:eee:ecofin:v:74:y:2024:i:c:s106294082400158x
    DOI: 10.1016/j.najef.2024.102233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S106294082400158X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2024.102233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Zhang, Ling & Lai, Yongzeng & Zhang, Shuhua & Li, Lin, 2019. "Efficient control variate methods with applications to exotic options pricing under subordinated Brownian motion models," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 602-621.
    3. Gerald Cheang & Carl Chiarella, 2011. "Exchange Options Under Jump-Diffusion Dynamics," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(3), pages 245-276.
    4. Ng, Andrew C.Y. & Li, Johnny Siu-Hang & Chan, Wai-Sum, 2013. "Pricing options on stocks denominated in different currencies: Theory and illustrations," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 339-354.
    5. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components1," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 39-55, October.
    6. Caldana, Ruggero & Fusai, Gianluca, 2013. "A general closed-form spread option pricing formula," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4893-4906.
    7. Ruggero Caldana & Gianluca Fusai & Alessandro Gnoatto & Martino Grasselli, 2016. "General closed-form basket option pricing bounds," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 535-554, April.
    8. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    9. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Working Paper 1159, Economics Department, Queen's University.
    10. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    11. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31, World Scientific Publishing Co. Pte. Ltd..
    12. Zaevski, Tsvetelin S. & Kim, Young Shin & Fabozzi, Frank J., 2014. "Option pricing under stochastic volatility and tempered stable Lévy jumps," International Review of Financial Analysis, Elsevier, vol. 31(C), pages 101-108.
    13. Petter Bjerksund & Gunnar Stensland, 2014. "Closed form spread option valuation," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1785-1794, October.
    14. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    15. Nielsen, J. Aase & Sandmann, Klaus, 2003. "Pricing Bounds on Asian Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(2), pages 449-473, June.
    16. Wang, Xingchun & Zhang, Han, 2022. "Pricing basket spread options with default risk under Heston–Nandi GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    17. Leccadito, Arturo & Paletta, Tommaso & Tunaru, Radu, 2016. "Pricing and hedging basket options with exact moment matching," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 59-69.
    18. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    19. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(3), pages 377-389, September.
    20. Gajda, Janusz & Wyłomańska, Agnieszka, 2013. "Tempered stable Lévy motion driven by stable subordinator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3168-3176.
    21. Hélyette Geman & Dilip B. Madan & Marc Yor, 2001. "Time Changes for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 79-96, January.
    22. Laura Ballotta & Efrem Bonfiglioli, 2016. "Multivariate asset models using Lévy processes and applications," The European Journal of Finance, Taylor & Francis Journals, vol. 22(13), pages 1320-1350, October.
    23. Deelstra, Griselda & Rayée, Grégory & Vanduffel, Steven & Yao, Jing, 2014. "Using Model-Independent Lower Bounds To Improve Pricing Of Asian Style Options In Lévy Markets," ASTIN Bulletin, Cambridge University Press, vol. 44(2), pages 237-276, May.
    24. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
    2. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    3. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    4. Laura Ballota & Griselda Deelstra & Grégory Rayée, 2015. "Quanto Implied Correlation in a Multi-Lévy Framework," Working Papers ECARES ECARES 2015-36, ULB -- Universite Libre de Bruxelles.
    5. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    6. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
    7. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    8. Colino, Jesús P., 2008. "New stochastic processes to model interest rates : LIBOR additive processes," DES - Working Papers. Statistics and Econometrics. WS ws085316, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    10. Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
    11. Wendong Zheng & Chi Hung Yuen & Yue Kuen Kwok, 2016. "Recursive Algorithms For Pricing Discrete Variance Options And Volatility Swaps Under Time-Changed Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-29, March.
    12. Geman, Helyette, 2002. "Pure jump Levy processes for asset price modelling," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1297-1316, July.
    13. Oscar Gutierrez, 2008. "Option valuation, time-changed processes and the fast Fourier transform," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 103-108.
    14. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    15. Ron Chan & Simon Hubbert, 2014. "Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme," Review of Derivatives Research, Springer, vol. 17(2), pages 161-189, July.
    16. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    17. Akira Yamazaki, 2016. "Generalized Barndorff-Nielsen And Shephard Model And Discretely Monitored Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-34, June.
    18. Mr. Noureddine Krichene, 2006. "Recent Dynamics of Crude Oil Prices," IMF Working Papers 2006/299, International Monetary Fund.
    19. Laura Ballotta, 2009. "Pricing and capital requirements for with profit contracts: modelling considerations," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 803-817.
    20. repec:dau:papers:123456789/1392 is not listed on IDEAS
    21. Feng, Chengxiao & Tan, Jie & Jiang, Zhenyu & Chen, Shuang, 2020. "A generalized European option pricing model with risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    More about this item

    Keywords

    Basket option; Spread option; Option pricing; Closed-form approximation; Normal tempered stable Lévy model;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • D60 - Microeconomics - - Welfare Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:74:y:2024:i:c:s106294082400158x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.