My bibliography
Save this item
Volatility Forecasting With Range-Based EGARCH Models
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jin-Huei Yeh & Jying-Nan Wang & Chung-Ming Kuan, 2014. "A noise-robust estimator of volatility based on interquantile ranges," Review of Quantitative Finance and Accounting, Springer, vol. 43(4), pages 751-779, November.
- Camilo Serrano & Martin Hoesli, 2010.
"Are Securitized Real Estate Returns more Predictable than Stock Returns?,"
The Journal of Real Estate Finance and Economics, Springer, vol. 41(2), pages 170-192, August.
- Camilo Serrano & Martin Hoesli, 2008. "Are Securitized Real Estate Returns more Predictable than Stock Returns?," Swiss Finance Institute Research Paper Series 08-27, Swiss Finance Institute.
- Camilo Serrano & Martin Hoesli, 2008. "Are Securitized Real Estate Returns More Predictable Than Stock Returns?," ERES eres2008_252, European Real Estate Society (ERES).
- Klein, Tony & Walther, Thomas, 2017. "Fast fractional differencing in modeling long memory of conditional variance for high-frequency data," Finance Research Letters, Elsevier, vol. 22(C), pages 274-279.
- Ray Chou & Chun-Chou Wu & Nathan Liu, 2009. "Forecasting time-varying covariance with a range-based dynamic conditional correlation model," Review of Quantitative Finance and Accounting, Springer, vol. 33(4), pages 327-345, November.
- Meng, Xiaochun & Taylor, James W., 2018. "An approximate long-memory range-based approach for value at risk estimation," International Journal of Forecasting, Elsevier, vol. 34(3), pages 377-388.
- Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008.
"Option valuation with long-run and short-run volatility components,"
Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
- Peter Christoffersen & Kris Jacobs & Yintian Wang, 2004. "Option Valuation with Long-run and Short-run Volatility Components," CIRANO Working Papers 2004s-56, CIRANO.
- Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai & Yintian Wang, 2008. "Option Valuation with Long-run and Short-run Volatility Components," CREATES Research Papers 2008-11, Department of Economics and Business Economics, Aarhus University.
- Subrata Roy, 2020. "Stock Market Asymmetry and Investors’ Sensation on Prime Minister: Indian Evidence," Jindal Journal of Business Research, , vol. 9(2), pages 148-161, December.
- (Jeremy) Chiu, Ching-wai & Harris, Richard D.F. & Stoja, Evarist & Chin, Michael, 2018.
"Financial market Volatility, macroeconomic fundamentals and investor Sentiment,"
Journal of Banking & Finance, Elsevier, vol. 92(C), pages 130-145.
- Chiu, Ching-Wai (Jeremy) & Harris, Richard & Stoja, Evarist & Chin, Michael, 2016. "Financial market volatility, macroeconomic fundamentals and investor sentiment," Bank of England working papers 608, Bank of England.
- Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
- Yuta Kurose, 2021. "Stochastic volatility model with range-based correction and leverage," Papers 2110.00039, arXiv.org, revised Oct 2021.
- Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2019. "Range-based DCC models for covariance and value-at-risk forecasting," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 58-76.
- Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012.
"Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range,"
International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
- Chen, C.W.S. & Gerlach, R. & Hwang, B.B.K. & McAleer, M.J., 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intraday Range," Econometric Institute Research Papers EI 2011-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," KIER Working Papers 775, Kyoto University, Institute of Economic Research.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," Documentos de Trabajo del ICAE 2011-16, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," Working Papers in Economics 11/22, University of Canterbury, Department of Economics and Finance.
- Kumar, Dilip, 2015. "Sudden changes in extreme value volatility estimator: Modeling and forecasting with economic significance analysis," Economic Modelling, Elsevier, vol. 49(C), pages 354-371.
- Fuertes, Ana-Maria & Olmo, Jose, 2013. "Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction," International Journal of Forecasting, Elsevier, vol. 29(1), pages 28-42.
- Fiszeder, Piotr & Perczak, Grzegorz, 2016. "Low and high prices can improve volatility forecasts during periods of turmoil," International Journal of Forecasting, Elsevier, vol. 32(2), pages 398-410.
- Dilip Kumar, 2016. "Sudden changes in crude oil price volatility: an application of extreme value volatility estimator," American Journal of Finance and Accounting, Inderscience Enterprises Ltd, vol. 4(3/4), pages 215-234.
- Léo Parent, 2022. "The EWMA Heston model," Post-Print hal-04431111, HAL.
- Subrata ROY, 2021. "Volatility Forecasting, Market Efficiency and Effect of Recession of SRI Indices," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(627), S), pages 259-284, Summer.
- S. Bhaumik & M. Karanasos & A. Kartsaklas, 2008. "Derivatives Trading and the Volume-Volatility Link in the Indian Stock Market," William Davidson Institute Working Papers Series wp935, William Davidson Institute at the University of Michigan.
- Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.
- Eduardo Rossi & Paolo Santucci de Magistris, 2013. "A No‐Arbitrage Fractional Cointegration Model for Futures and Spot Daily Ranges," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(1), pages 77-102, January.
- Harvey,Andrew C., 2013.
"Dynamic Models for Volatility and Heavy Tails,"
Cambridge Books,
Cambridge University Press, number 9781107034723, October.
- Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, October.
- Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015.
"Aggregate volatility expectations and threshold CAPM,"
The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.
- Eser Arisoy & Aslihan Altay-Salih & Levent Akdeniz, 2015. "Aggregate Volatility Expectations and Threshold CAPM," Post-Print hal-01634175, HAL.
- Asai, Manabu & Brugal, Ivan, 2013. "Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 202-213.
- Frömmel, Michael & Han, Xing & Kratochvil, Stepan, 2014. "Modeling the daily electricity price volatility with realized measures," Energy Economics, Elsevier, vol. 44(C), pages 492-502.
- Simón Sosvilla-Rivero & Amalia Morales-Zumaquero, 2011.
"Volatility in EMU sovereign bond yields: Permanent and transitory components,"
Working Papers del Instituto Complutense de Estudios Internacionales
1106, Universidad Complutense de Madrid, Instituto Complutense de Estudios Internacionales.
- Simón Sosvilla-Rivero & Amalia Morales-Zumaquero, 2011. "Volatility in EMU sovereign bond yields: Permanent and transitory components," Working Papers 11-03, Asociación Española de Economía y Finanzas Internacionales.
- Yuta Kurose, 2022. "Bayesian GARCH modeling for return and range," Economics Bulletin, AccessEcon, vol. 42(3), pages 1717-1727.
- Harris, Richard D.F. & Stoja, Evarist & Yilmaz, Fatih, 2011.
"A cyclical model of exchange rate volatility,"
Journal of Banking & Finance, Elsevier, vol. 35(11), pages 3055-3064, November.
- Evarist Stoja & Richard D. F. Harris & Fatih Yilmaz, 2010. "A Cyclical Model of Exchange Rate Volatility," Bristol Economics Discussion Papers 10/618, School of Economics, University of Bristol, UK.
- Yang, Hu & Chen, Yu & Chen, Kedong & Wang, Haijun, 2024. "Temporal-spatial dependencies enhanced deep learning model for time series forecast," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Olivier Wintenberger, 2013.
"Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model,"
Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
- Wintenberger, Olivier, 2013. "Continuous invertibility and stable QML estimation of the EGARCH(1,1) model," MPRA Paper 46027, University Library of Munich, Germany.
- Paulo M.M. Rodrigues & Matei Demetrescu, 2018. "Testing the fractionally integrated hypothesis using M estimation: With an application to stock market volatility," Working Papers w201817, Banco de Portugal, Economics and Research Department.
- Lakshmi Padmakumari & S Maheswaran, 2016. "A Regression Based Approach to Capturing the Level Dependence in the Volatility of Stock Returns," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(12), pages 706-718, December.
- Firat Melih Yilmaz & Engin Yildiztepe, 2024. "Statistical Evaluation of Deep Learning Models for Stock Return Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 221-244, January.
- Christoffersen, Peter & Fournier, Mathieu & Jacobs, Kris & Karoui, Mehdi, 2021.
"Option-Based Estimation of the Price of Coskewness and Cokurtosis Risk,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 56(1), pages 65-91, February.
- Peter Christoffersen & Mathieu Fournier & Kris Jacobs & Mehdi Karoui, 2015. "Option-Based Estimation of the Price of Co-Skewness and Co-Kurtosis Risk," CREATES Research Papers 2015-54, Department of Economics and Business Economics, Aarhus University.
- Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, August.
- Vladimir Tsenkov, 2009. "Financial Markets Modelling," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 87-96.
- Chou, Ray Yeutien & Cai, Yijie, 2009. "Range-based multivariate volatility model with double smooth transition in conditional correlation," Global Finance Journal, Elsevier, vol. 20(2), pages 137-152.
- Wang, Yi-Chiuan & Wu, Jyh-Lin & Lai, Yi-Hao, 2018. "New evidence on asymmetric return–volume dependence and extreme movements," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 212-227.
- Gianluca Vagnani, 2009. "The Black-Scholes model as a determinant of the implied volatility smile: A simulation study," Post-Print hal-00736952, HAL.
- Ozgur (Ozzy) Akay & Mark D. Griffiths & Drew B. Winters, 2010. "On The Robustness Of Range‐Based Volatility Estimators," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(2), pages 179-199, June.
- Reboredo, Juan C., 2011. "How do crude oil prices co-move?: A copula approach," Energy Economics, Elsevier, vol. 33(5), pages 948-955, September.
- Wintenberger, Olivier & Cai, Sixiang, 2011. "Parametric inference and forecasting in continuously invertible volatility models," MPRA Paper 31767, University Library of Munich, Germany.
- Chatzikonstanti, Vasiliki & Venetis, Ioannis A., 2015. "Long memory in log-range series: Do structural breaks matter?," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 104-113.
- Sin, Chor-Yiu (CY), 2013. "Using CARRX models to study factors affecting the volatilities of Asian equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 552-564.
- Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 958-969.
- Nicole Abruzzo & Yang-Ho Park, 2014. "An Empirical Analysis of Futures Margin Changes: Determinants and Policy Implications," Finance and Economics Discussion Series 2014-86, Board of Governors of the Federal Reserve System (U.S.).
- Karanasos, M. & Kartsaklas, A., 2009. "Dual long-memory, structural breaks and the link between turnover and the range-based volatility," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 838-851, December.
- Kumar, Dilip & Maheswaran, S., 2014. "Modeling and forecasting the additive bias corrected extreme value volatility estimator," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 166-176.
- Petmezas, Dimitris & Santamaria, Daniel, 2014. "Investor induced contagion during the banking and European sovereign debt crisis of 2007–2012: Wealth effect or portfolio rebalancing?," Journal of International Money and Finance, Elsevier, vol. 49(PB), pages 401-424.
- Reboredo, Juan C., 2014. "Volatility spillovers between the oil market and the European Union carbon emission market," Economic Modelling, Elsevier, vol. 36(C), pages 229-234.
- Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," Bank of England working papers 660, Bank of England.
- Tan, Shay-Kee & Ng, Kok-Haur & Chan, Jennifer So-Kuen & Mohamed, Ibrahim, 2019. "Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 537-551.
- Prelorentzos, Arsenios-Georgios N. & Konstantakis, Konstantinos N. & Michaelides, Panayotis G. & Xidonas, Panos & Goutte, Stephane & Thomakos, Dimitrios D., 2024. "Introducing the GVAR-GARCH model: Evidence from financial markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
- Kim Karlsson, Hyunjoo & Li, Yushu, 2024. "Investigation of Swedish krona exchange rate volatility by APARCH-Support Vector Regression," Working Papers in Economics and Statistics 10/2024, Linnaeus University, School of Business and Economics, Department of Economics and Statistics.
- Haase, Marco & Huss, Matthias, 2018. "Guilty speculators? Range-based conditional volatility in a cross-section of wheat futures," Journal of Commodity Markets, Elsevier, vol. 10(C), pages 29-46.
- Li, Xingyi & Zakamulin, Valeriy, 2020. "The term structure of volatility predictability," International Journal of Forecasting, Elsevier, vol. 36(2), pages 723-737.
- Piotr Fiszeder & Marta Ma³ecka, 2022. "Forecasting volatility during the outbreak of Russian invasion of Ukraine: application to commodities, stock indices, currencies, and cryptocurrencies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(4), pages 939-967, December.
- Harris, Richard D.F. & Yilmaz, Fatih, 2010. "Estimation of the conditional variance-covariance matrix of returns using the intraday range," International Journal of Forecasting, Elsevier, vol. 26(1), pages 180-194, January.
- Bernard Ben Sita, 2019. "Crude oil and gasoline volatility risk into a Realized-EGARCH model," Review of Quantitative Finance and Accounting, Springer, vol. 53(3), pages 701-720, October.
- Lin, Edward M.H. & Chen, Cathy W.S. & Gerlach, Richard, 2012. "Forecasting volatility with asymmetric smooth transition dynamic range models," International Journal of Forecasting, Elsevier, vol. 28(2), pages 384-399.
- Reboredo, Juan C. & Ugando, Mikel, 2015. "Downside risks in EU carbon and fossil fuel markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 111(C), pages 17-35.
- Lucas Hafemann, 2021. "The Nexus between lockdown Shocks and Economic Uncertainty: Empirical Evidence from a VAR model," MAGKS Papers on Economics 202132, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Wu, Chih-Chiang & Liang, Shin-Shun, 2011. "The economic value of range-based covariance between stock and bond returns with dynamic copulas," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 711-727, September.
- Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
- Futeri Jazeilya Md Fadzil & John G. O’Hara & Wing Lon Ng, 2017. "Cross-sectional volatility index as a proxy for the VIX in an Asian market," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1364011-136, January.
- Piotr Fiszeder, 2018. "Low and high prices can improve covariance forecasts: The evidence based on currency rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(6), pages 641-649, September.
- Md. Mohibul Islam & Anisul M. Islam, 2017. "Impact of Index Options on Emerging Market Volatility: The Case of the Malaysian Equity Market," International Journal of Economics and Financial Research, Academic Research Publishing Group, vol. 3(9), pages 157-15-172, 09-2017.
- Wu, Chih-Chiang & Chiu, Junmao, 2017. "Economic evaluation of asymmetric and price range information in gold and general financial markets," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 53-68.
- Molnár, Peter, 2012. "Properties of range-based volatility estimators," International Review of Financial Analysis, Elsevier, vol. 23(C), pages 20-29.
- Thuy Thi Thu Truong & Jungmu Kim, 2019. "Premiums for Non-Sustainable and Sustainable Components of Market Volatility: Evidence from the Korean Stock Market," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
- Ping-Chen Tsai & Chi-Ming Tsai, 2021. "Estimating the proportion of informed and speculative traders in financial markets: evidence from exchange rate," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 443-470, July.
- Eduardo Rossi & Paolo Santucci de Magistris, 2009. "A No Arbitrage Fractional Cointegration Analysis Of The Range Based Volatility," CREATES Research Papers 2009-31, Department of Economics and Business Economics, Aarhus University.
- Shaen Corbet & Cian Twomey, 2014. "Have Exchange Traded Funds Influenced Commodity Market Volatility?," International Journal of Economics and Financial Issues, Econjournals, vol. 4(2), pages 323-335.
- Chou, Ray Yeutien & Liu, Nathan, 2010. "The economic value of volatility timing using a range-based volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2288-2301, November.
- Tomasz Skoczylas, 2013. "Modelowanie i prognozowanie zmienności przy użyciu modeli opartych o zakres wahań," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 35.
- Sensoy, Ahmet & Uzun, Sevcan & Lucey, Brian M., 2021. "Commonality in FX liquidity: High-frequency evidence," Finance Research Letters, Elsevier, vol. 39(C).
- Visser, Marcel P., 2008. "Forecasting S&P 500 Daily Volatility using a Proxy for Downward Price Pressure," MPRA Paper 11100, University Library of Munich, Germany.
- Zaffaroni, Paolo, 2009. "Whittle estimation of EGARCH and other exponential volatility models," Journal of Econometrics, Elsevier, vol. 151(2), pages 190-200, August.
- Tomasz Skoczylas, 2015. "Bivariate GARCH models for single asset returns," Working Papers 2015-03, Faculty of Economic Sciences, University of Warsaw.
- D’Amato, Valeria & Levantesi, Susanna & Piscopo, Gabriella, 2022. "Deep learning in predicting cryptocurrency volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
- Padmakumari, Lakshmi & S., Maheswaran, 2017. "A new statistic to capture the level dependence in stock price volatility," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 355-362.
- Wang, Weichen & An, Ran & Zhu, Ziwei, 2024. "Volatility prediction comparison via robust volatility proxies: An empirical deviation perspective," Journal of Econometrics, Elsevier, vol. 239(2).
- Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
- Kumar, Dilip & Maheswaran, S., 2014. "A new approach to model and forecast volatility based on extreme value of asset prices," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 128-140.
- Grosche, Stephanie & Heckelei, Thomas, 2014. "Directional Volatility Spillovers between Agricultural, Crude Oil, Real Estate and other Financial Markets," Discussion Papers 166079, University of Bonn, Institute for Food and Resource Economics.
- Miao, Daniel Wei-Chung & Wu, Chun-Chou & Su, Yi-Kai, 2013. "Regime-switching in volatility and correlation structure using range-based models with Markov-switching," Economic Modelling, Elsevier, vol. 31(C), pages 87-93.
- Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
- Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2008. "Volatility forecasting using threshold heteroskedastic models of the intra-day range," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2990-3010, February.
- Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
- Chih-Wen Hsiao & Ya-Chuan Chan & Mei-Yu Lee & Hsi-Peng Lu, 2021. "Heteroscedasticity and Precise Estimation Model Approach for Complex Financial Time-Series Data: An Example of Taiwan Stock Index Futures before and during COVID-19," Mathematics, MDPI, vol. 9(21), pages 1-18, October.
- Vagnani, Gianluca, 2009. "The Black-Scholes model as a determinant of the implied volatility smile: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 72(1), pages 103-118, October.
- Tomasz Skoczylas, 2015. "Log-volatility enhanced GARCH models for single asset returns," Bank i Kredyt, Narodowy Bank Polski, vol. 46(5), pages 411-432.
- Jie Zhu, 2009. "Pricing volatility of stock returns with volatile and persistent components," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 23(3), pages 243-269, September.
- Fałdziński, Marcin & Fiszeder, Piotr & Molnár, Peter, 2024. "Improving volatility forecasts: Evidence from range-based models," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
- Ng, Kok Haur & Peiris, Shelton & Chan, Jennifer So-kuen & Allen, David & Ng, Kooi Huat, 2017. "Efficient modelling and forecasting with range based volatility models and its application," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 448-460.
- Jie Zhu, 2008. "Pricing Volatility of Stock Returns with Volatile and Persistent Components," CREATES Research Papers 2008-14, Department of Economics and Business Economics, Aarhus University.
- Chun Liu & John M. Maheu, 2009.
"Forecasting realized volatility: a Bayesian model-averaging approach,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
- Chun Liu & John M Maheu, 2008. "Forecasting Realized Volatility: A Bayesian Model Averaging Approach," Working Papers tecipa-313, University of Toronto, Department of Economics.
- Fiszeder, Piotr & Fałdziński, Marcin, 2019. "Improving forecasts with the co-range dynamic conditional correlation model," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
- Dilip Kumar, 2016. "Estimating and forecasting value-at-risk using the unbiased extreme value volatility estimator," Proceedings of Economics and Finance Conferences 3205528, International Institute of Social and Economic Sciences.
- Weijia Peng & Chun Yao, 2022. "Co-Jumps, Co-Jump Tests, and Volatility Forecasting: Monte Carlo and Empirical Evidence," JRFM, MDPI, vol. 15(8), pages 1-21, July.
- Zaremba, Adam, 2019. "Price range and the cross-section of expected country and industry returns," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 174-189.
- Wu, Xinyu & Xie, Haibin & Zhang, Huanming, 2022. "Time-varying risk aversion and renminbi exchange rate volatility: Evidence from CARR-MIDAS model," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
- Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
- Dilip Kumar, 2018. "Modeling and Forecasting Unbiased Extreme Value Volatility Estimator in Presence of Leverage Effect," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(2), pages 313-335, June.
- Bhaumik, S. & Karanasos, M. & Kartsaklas, A., 2016. "The informative role of trading volume in an expanding spot and futures market," Journal of Multinational Financial Management, Elsevier, vol. 35(C), pages 24-40.
- Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
- Chen, Wei-Peng & Choudhry, Taufiq & Wu, Chih-Chiang, 2013. "The extreme value in crude oil and US dollar markets," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 191-210.
- Haibin Xie & Shouyang Wang, 2018. "Timing the market: the economic value of price extremes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-24, December.
- Chiang, Min-Hsien & Wang, Li-Min, 2011. "Volatility contagion: A range-based volatility approach," Journal of Econometrics, Elsevier, vol. 165(2), pages 175-189.
- Vipul Kumar Singh, 2013. "Effectiveness of volatility models in option pricing: evidence from recent financial upheavals," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 10(3), pages 352-375, October.
- Peter Molnár, 2016. "High-low range in GARCH models of stock return volatility," Applied Economics, Taylor & Francis Journals, vol. 48(51), pages 4977-4991, November.
- Richard Gerlach & Chao Wang, 2016. "Forecasting risk via realized GARCH, incorporating the realized range," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 501-511, April.
- Isuru Ratnayake & V. A. Samaranayake, 2022. "Threshold Asymmetric Conditional Autoregressive Range (TACARR) Model," Papers 2202.03351, arXiv.org, revised Mar 2022.
- Xie, Haibin & Wu, Xinyu, 2017. "A conditional autoregressive range model with gamma distribution for financial volatility modelling," Economic Modelling, Elsevier, vol. 64(C), pages 349-356.
- Min-Hsien Chiang & Ray Yeutien Chou & Li-Min Wang, 2016. "Outlier Detection in the Lognormal Logarithmic Conditional Autoregressive Range Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(1), pages 126-144, February.