IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2719-d665309.html
   My bibliography  Save this article

Heteroscedasticity and Precise Estimation Model Approach for Complex Financial Time-Series Data: An Example of Taiwan Stock Index Futures before and during COVID-19

Author

Listed:
  • Chih-Wen Hsiao

    (Graduate School of Management, National Taiwan University of Science and Technology, Taipei 106335, Taiwan)

  • Ya-Chuan Chan

    (Department of Finance, Minghsin University of Science and Technology, Hsinchu 304, Taiwan)

  • Mei-Yu Lee

    (Department of Finance, Minghsin University of Science and Technology, Hsinchu 304, Taiwan)

  • Hsi-Peng Lu

    (Department of Information Management, National Taiwan University of Science and Technology, Taipei 106335, Taiwan)

Abstract

In this paper, we provide a mathematical and statistical methodology using heteroscedastic estimation to achieve the aim of building a more precise mathematical model for complex financial data. Considering a general regression model with explanatory variables (the expected value model form) and the error term (including heteroscedasticity), the optimal expected value and heteroscedastic model forms are investigated by linear, nonlinear, curvilinear, and composition function forms, using the minimum mean-squared error criterion to show the precision of the methodology. After combining the two optimal models, the fitted values of the financial data are more precise than the linear regression model in the literature and also show the fitted model forms in the example of Taiwan stock price index futures that has three cases: (1) before COVID-19, (2) during COVID-19, and (3) the entire observation time period. The fitted mathematical models can apparently show how COVID-19 affects the return rates of Taiwan stock price index futures. Furthermore, the fitted heteroscedastic models also show how COVID-19 influences the fluctuations of the return rates of Taiwan stock price index futures. This methodology will contribute to the probability of building algorithms for computing and predicting financial data based on mathematical model form outcomes and assist model comparisons after adding new data to a database.

Suggested Citation

  • Chih-Wen Hsiao & Ya-Chuan Chan & Mei-Yu Lee & Hsi-Peng Lu, 2021. "Heteroscedasticity and Precise Estimation Model Approach for Complex Financial Time-Series Data: An Example of Taiwan Stock Index Futures before and during COVID-19," Mathematics, MDPI, vol. 9(21), pages 1-18, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2719-:d:665309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2719/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2719/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2019. "Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data," Econometrics, MDPI, vol. 7(3), pages 1-27, September.
    2. Bakas, Dimitrios & Triantafyllou, Athanasios, 2020. "Commodity price volatility and the economic uncertainty of pandemics," Economics Letters, Elsevier, vol. 193(C).
    3. Claudiu Albulescu, 2020. "Coronavirus and financial volatility: 40 days of fasting and fear," Papers 2003.04005, arXiv.org.
    4. Albulescu, Claudiu Tiberiu, 2021. "COVID-19 and the United States financial markets’ volatility," Finance Research Letters, Elsevier, vol. 38(C).
    5. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    6. Zaffaroni, Paolo, 2009. "Whittle estimation of EGARCH and other exponential volatility models," Journal of Econometrics, Elsevier, vol. 151(2), pages 190-200, August.
    7. Brandt, Michael W. & Jones, Christopher S., 2006. "Volatility Forecasting With Range-Based EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 470-486, October.
    8. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    9. Claudio Nuber & Patrick Velte & Jacob Hörisch, 2020. "The curvilinear and time‐lagging impact of sustainability performance on financial performance: Evidence from Germany," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(1), pages 232-243, January.
    10. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    11. Marcel P. Visser, 2011. "GARCH Parameter Estimation Using High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 9(1), pages 162-197, Winter.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alena Vagaská & Miroslav Gombár & Antonín Korauš, 2022. "Mathematical Modeling and Nonlinear Optimization in Determining the Minimum Risk of Legalization of Income from Criminal Activities in the Context of EU Member Countries," Mathematics, MDPI, vol. 10(24), pages 1-25, December.
    2. Carlo Drago & Andrea Scozzari, 2023. "A Network-Based Analysis for Evaluating Conditional Covariance Estimates," Mathematics, MDPI, vol. 11(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucas Hafemann, 2021. "The Nexus between lockdown Shocks and Economic Uncertainty: Empirical Evidence from a VAR model," MAGKS Papers on Economics 202132, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    2. Marijke Verpoorten & Lode Berlage, 2004. "Genocide and land scarcity: Can Rwandan rural households manage?," CSAE Working Paper Series 2004-15, Centre for the Study of African Economies, University of Oxford.
    3. Russell, Bill & Chowdhury, Rosen Azad, 2013. "Estimating United States Phillips curves with expectations consistent with the statistical process of inflation," Journal of Macroeconomics, Elsevier, vol. 35(C), pages 24-38.
    4. Joachim Zietz, 2006. "Detecting neglected parameter heterogeneity with Chow tests," Applied Economics Letters, Taylor & Francis Journals, vol. 13(6), pages 369-374.
    5. Pedro Delicado & Juan Romo, 1998. "Constant coefficient tests for random coefficient regression," Economics Working Papers 329, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Kendix, Michael & Walls, W.D., 2010. "Oil industry consolidation and refined product prices: Evidence from US wholesale gasoline terminals," Energy Policy, Elsevier, vol. 38(7), pages 3498-3507, July.
    7. Seren Firat & Esat Dasdemir, 2021. "Application of Quantity Theory of Money in Cryptocurrencies: Example of Bitcoin and the Impact of Covid-19," Istanbul Journal of Economics-Istanbul Iktisat Dergisi, Istanbul University, Faculty of Economics, vol. 71(1), pages 81-102, June.
    8. LE GALLO, Julie, 2000. "Econométrie spatiale 2 -Hétérogénéité spatiale," LATEC - Document de travail - Economie (1991-2003) 2001-01, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    9. David I Stern, 2014. "High-Ranked Social Science Journal Articles Can Be Identified from Early Citation Information," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-11, November.
    10. Olivier Damette & Philippe Delacote, 2009. "The environmental resource curse hypothesis: the forest case," Working Papers - Cahiers du LEF 2009-04, Laboratoire d'Economie Forestiere, AgroParisTech-INRA.
    11. Zaman, Asad, 1995. "On the inconsistency of the Breusch-Pagan test," MPRA Paper 9904, University Library of Munich, Germany.
    12. Julie Le Gallo, 2004. "Hétérogénéité spatiale : principes et méthodes," Économie et Prévision, Programme National Persée, vol. 162(1), pages 151-172.
    13. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
    14. Li, Zhaoyuan & Yao, Jianfeng, 2019. "Testing for heteroscedasticity in high-dimensional regressions," Econometrics and Statistics, Elsevier, vol. 9(C), pages 122-139.
    15. Cem Ertur & Julie Le Gallo & Catherine Baumont, 2006. "The European Regional Convergence Process, 1980-1995: Do Spatial Regimes and Spatial Dependence Matter?," International Regional Science Review, , vol. 29(1), pages 3-34, January.
    16. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    17. Jacqueline Karlsson & Helena Melin & Kevin Cullinane, 2018. "The impact of potential Brexit scenarios on German car exports to the UK: an application of the gravity model," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-22, December.
    18. Miomir Jovanović & Ljiljana Kašćelan & Aleksandra Despotović & Vladimir Kašćelan, 2015. "The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies," Sustainability, MDPI, vol. 7(12), pages 1-21, December.
    19. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    20. Baldauf, Markus & Santos Silva, J.M.C., 2012. "On the use of robust regression in econometrics," Economics Letters, Elsevier, vol. 114(1), pages 124-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2719-:d:665309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.