My bibliography
Save this item
SparseNet: Coordinate Descent With Nonconvex Penalties
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
- Rahul Ghosal & Arnab Maity & Timothy Clark & Stefano B. Longo, 2020. "Variable selection in functional linear concurrent regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 565-587, June.
- Jin Liu & Shuangge Ma & Jian Huang, 2014. "Integrative Analysis of Cancer Diagnosis Studies with Composite Penalization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 87-103, March.
- Liu, Wenchen & Tang, Yincai & Wu, Xianyi, 2020. "Separating variables to accelerate non-convex regularized optimization," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
- VÁZQUEZ-ALCOCER, Alan & SCHOEN, Eric D. & GOOS, Peter, 2018. "A mixed integer optimization approach for model selection in screening experiments," Working Papers 2018007, University of Antwerp, Faculty of Business and Economics.
- Anda Tang & Pei Quan & Lingfeng Niu & Yong Shi, 2022. "A Survey for Sparse Regularization Based Compression Methods," Annals of Data Science, Springer, vol. 9(4), pages 695-722, August.
- Hu, Jianwei & Chai, Hao, 2013. "Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 96-114.
- Siwei Xia & Yuehan Yang & Hu Yang, 2022. "Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 255-277, March.
- Benjamin G. Stokell & Rajen D. Shah & Ryan J. Tibshirani, 2021. "Modelling high‐dimensional categorical data using nonconvex fusion penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 579-611, July.
- Friedman, Jerome H., 2012. "Fast sparse regression and classification," International Journal of Forecasting, Elsevier, vol. 28(3), pages 722-738.
- Po-Hsien Huang & Hung Chen & Li-Jen Weng, 2017. "A Penalized Likelihood Method for Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 329-354, June.
- Kei Hirose & Miyuki Imada, 2018. "Sparse factor regression via penalized maximum likelihood estimation," Statistical Papers, Springer, vol. 59(2), pages 633-662, June.
- Nicholas G. Polson & James G. Scott, 2016. "Mixtures, envelopes and hierarchical duality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 701-727, September.
- Wei Sun & Yufeng Liu & James J. Crowley & Ting-Huei Chen & Hua Zhou & Haitao Chu & Shunping Huang & Pei-Fen Kuan & Yuan Li & Darla Miller & Ginger Shaw & Yichao Wu & Vasyl Zhabotynsky & Leonard McMill, 2015. "IsoDOT Detects Differential RNA-Isoform Expression/Usage With Respect to a Categorical or Continuous Covariate With High Sensitivity and Specificity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 975-986, September.
- Peili Li & Min Liu & Zhou Yu, 2023. "A global two-stage algorithm for non-convex penalized high-dimensional linear regression problems," Computational Statistics, Springer, vol. 38(2), pages 871-898, June.
- Xinyi Liu & Gabriel Wallin & Yunxiao Chen & Irini Moustaki, 2023. "Rotation to Sparse Loadings Using $$L^p$$ L p Losses and Related Inference Problems," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 527-553, June.
- Yuta Umezu & Yusuke Shimizu & Hiroki Masuda & Yoshiyuki Ninomiya, 2019. "AIC for the non-concave penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 247-274, April.
- Ben-Ameur, Walid & Neto, José, 2022. "New bounds for subset selection from conic relaxations," European Journal of Operational Research, Elsevier, vol. 298(2), pages 425-438.
- Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
- C. F. Jeff Wu, 2018. "A fresh look at effect aliasing and interactions: some new wine in old bottles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 249-268, April.
- He, Qianchuan & Kong, Linglong & Wang, Yanhua & Wang, Sijian & Chan, Timothy A. & Holland, Eric, 2016. "Regularized quantile regression under heterogeneous sparsity with application to quantitative genetic traits," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 222-239.
- Kohei Adachi & Nickolay T. Trendafilov, 2018. "Sparsest factor analysis for clustering variables: a matrix decomposition approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 559-585, September.
- Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
- Xiang Zhang & Yichao Wu & Lan Wang & Runze Li, 2016. "Variable selection for support vector machines in moderately high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 53-76, January.
- Dimitris Bertsimas & Angela King, 2016. "OR Forum—An Algorithmic Approach to Linear Regression," Operations Research, INFORMS, vol. 64(1), pages 2-16, February.
- Minh Pham & Xiaodong Lin & Andrzej Ruszczyński & Yu Du, 2021. "An outer–inner linearization method for non-convex and nondifferentiable composite regularization problems," Journal of Global Optimization, Springer, vol. 81(1), pages 179-202, September.
- Wang, Yueyao & Lee, I-Chen & Hong, Yili & Deng, Xinwei, 2022. "Building degradation index with variable selection for multivariate sensory data," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
- Gabriel E Hoffman & Benjamin A Logsdon & Jason G Mezey, 2013. "PUMA: A Unified Framework for Penalized Multiple Regression Analysis of GWAS Data," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-19, June.
- Xin Liu & Bangxin Zhao & Wenqing He, 2020. "Simultaneous Feature Selection and Classification for Data-Adaptive Kernel-Penalized SVM," Mathematics, MDPI, vol. 8(10), pages 1-22, October.
- Liu, Xinyi Lin & Wallin, Gabriel & Chen, Yunxiao & Moustaki, Irini, 2023. "Rotation to sparse loadings using Lp losses and related inference problems," LSE Research Online Documents on Economics 118349, London School of Economics and Political Science, LSE Library.
- Bartosz Uniejewski, 2024.
"Regularization for electricity price forecasting,"
Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(3), pages 267-286.
- Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Papers 2404.03968, arXiv.org.
- Liqun Yu & Nan Lin, 2017. "ADMM for Penalized Quantile Regression in Big Data," International Statistical Review, International Statistical Institute, vol. 85(3), pages 494-518, December.
- Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
- Carina Moreira Costa & Dennis Kreber & Martin Schmidt, 2022. "An Alternating Method for Cardinality-Constrained Optimization: A Computational Study for the Best Subset Selection and Sparse Portfolio Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2968-2988, November.
- Piotr Pokarowski & Wojciech Rejchel & Agnieszka Sołtys & Michał Frej & Jan Mielniczuk, 2022. "Improving Lasso for model selection and prediction," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 831-863, June.
- Yingying Fan & Jinchi Lv, 2014. "Asymptotic properties for combined L1 and concave regularization," Biometrika, Biometrika Trust, vol. 101(1), pages 57-70.
- Michio Yamamoto & Heungsun Hwang, 2017. "Dimension-Reduced Clustering of Functional Data via Subspace Separation," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 294-326, July.
- Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
- Runmin Shi & Faming Liang & Qifan Song & Ye Luo & Malay Ghosh, 2018. "A Blockwise Consistency Method for Parameter Estimation of Complex Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 179-223, December.
- Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.