IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v70y2018i2d10.1007_s10463-018-0646-0.html
   My bibliography  Save this article

A fresh look at effect aliasing and interactions: some new wine in old bottles

Author

Listed:
  • C. F. Jeff Wu

    (Georgia Institute of Technology)

Abstract

Interactions and effect aliasing are among the fundamental concepts in experimental design. In this paper, some new insights and approaches are provided on these subjects. In the literature, the “de-aliasing” of aliased effects is deemed to be impossible. We argue that this “impossibility” can indeed be resolved by employing a new approach which consists of reparametrization of effects and exploitation of effect non-orthogonality. This approach is successfully applied to three classes of designs: regular and nonregular two-level fractional factorial designs, and three-level fractional factorial designs. For reparametrization, the notion of conditional main effects (cme’s) is employed for two-level regular designs, while the linear-quadratic system is used for three-level designs. For nonregular two-level designs, reparametrization is not needed because the partial aliasing of their effects already induces non-orthogonality. The approach can be extended to general observational data by using a new bi-level variable selection technique based on the cme’s. A historical recollection is given on how these ideas were discovered.

Suggested Citation

  • C. F. Jeff Wu, 2018. "A fresh look at effect aliasing and interactions: some new wine in old bottles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 249-268, April.
  • Handle: RePEc:spr:aistmt:v:70:y:2018:i:2:d:10.1007_s10463-018-0646-0
    DOI: 10.1007/s10463-018-0646-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-018-0646-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-018-0646-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mazumder, Rahul & Friedman, Jerome H. & Hastie, Trevor, 2011. "SparseNet: Coordinate Descent With Nonconvex Penalties," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1125-1138.
    2. Arman Sabbaghi & Tirthankar Dasgupta & C. F. Jeff Wu, 2014. "Indicator functions and the algebra of the linear-quadratic parameterization," Biometrika, Biometrika Trust, vol. 101(2), pages 351-363.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    2. Kohei Adachi & Nickolay T. Trendafilov, 2018. "Sparsest factor analysis for clustering variables: a matrix decomposition approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 559-585, September.
    3. Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Papers 2404.03968, arXiv.org.
    4. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    5. Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
    6. Anda Tang & Pei Quan & Lingfeng Niu & Yong Shi, 2022. "A Survey for Sparse Regularization Based Compression Methods," Annals of Data Science, Springer, vol. 9(4), pages 695-722, August.
    7. Ben-Ameur, Walid & Neto, José, 2022. "New bounds for subset selection from conic relaxations," European Journal of Operational Research, Elsevier, vol. 298(2), pages 425-438.
    8. Wang, Yueyao & Lee, I-Chen & Hong, Yili & Deng, Xinwei, 2022. "Building degradation index with variable selection for multivariate sensory data," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    9. Rahul Ghosal & Arnab Maity & Timothy Clark & Stefano B. Longo, 2020. "Variable selection in functional linear concurrent regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 565-587, June.
    10. Po-Hsien Huang & Hung Chen & Li-Jen Weng, 2017. "A Penalized Likelihood Method for Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 329-354, June.
    11. Xiang Zhang & Yichao Wu & Lan Wang & Runze Li, 2016. "Variable selection for support vector machines in moderately high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 53-76, January.
    12. Liu, Xinyi Lin & Wallin, Gabriel & Chen, Yunxiao & Moustaki, Irini, 2023. "Rotation to sparse loadings using Lp losses and related inference problems," LSE Research Online Documents on Economics 118349, London School of Economics and Political Science, LSE Library.
    13. VÁZQUEZ-ALCOCER, Alan & SCHOEN, Eric D. & GOOS, Peter, 2018. "A mixed integer optimization approach for model selection in screening experiments," Working Papers 2018007, University of Antwerp, Faculty of Business and Economics.
    14. Hu, Jianwei & Chai, Hao, 2013. "Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 96-114.
    15. Wenlong Li & Bing Guo & Hengzhen Huang & Min-Qian Liu, 2021. "Semifoldover plans for three-level orthogonal arrays with quantitative factors," Statistical Papers, Springer, vol. 62(6), pages 2691-2709, December.
    16. Minh Pham & Xiaodong Lin & Andrzej Ruszczyński & Yu Du, 2021. "An outer–inner linearization method for non-convex and nondifferentiable composite regularization problems," Journal of Global Optimization, Springer, vol. 81(1), pages 179-202, September.
    17. Yingying Fan & Jinchi Lv, 2014. "Asymptotic properties for combined L1 and concave regularization," Biometrika, Biometrika Trust, vol. 101(1), pages 57-70.
    18. Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
    19. Runmin Shi & Faming Liang & Qifan Song & Ye Luo & Malay Ghosh, 2018. "A Blockwise Consistency Method for Parameter Estimation of Complex Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 179-223, December.
    20. Siwei Xia & Yuehan Yang & Hu Yang, 2022. "Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 255-277, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:70:y:2018:i:2:d:10.1007_s10463-018-0646-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.