Separating variables to accelerate non-convex regularized optimization
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2020.106943
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dankmar Böhning & Bruce Lindsay, 1988. "Monotonicity of quadratic-approximation algorithms," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(4), pages 641-663, December.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Mazumder, Rahul & Friedman, Jerome H. & Hastie, Trevor, 2011. "SparseNet: Coordinate Descent With Nonconvex Penalties," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1125-1138.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Umberto Amato & Anestis Antoniadis & Italia Feis & Irène Gijbels, 2022. "Penalized wavelet estimation and robust denoising for irregular spaced data," Computational Statistics, Springer, vol. 37(4), pages 1621-1651, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
- Siwei Xia & Yuehan Yang & Hu Yang, 2022. "Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 255-277, March.
- Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
- Piotr Pokarowski & Wojciech Rejchel & Agnieszka Sołtys & Michał Frej & Jan Mielniczuk, 2022. "Improving Lasso for model selection and prediction," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 831-863, June.
- Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
- Runmin Shi & Faming Liang & Qifan Song & Ye Luo & Malay Ghosh, 2018. "A Blockwise Consistency Method for Parameter Estimation of Complex Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 179-223, December.
- Benjamin G. Stokell & Rajen D. Shah & Ryan J. Tibshirani, 2021. "Modelling high‐dimensional categorical data using nonconvex fusion penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 579-611, July.
- Lee, Sangin & Kwon, Sunghoon & Kim, Yongdai, 2016. "A modified local quadratic approximation algorithm for penalized optimization problems," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 275-286.
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Zhu Wang, 2022. "MM for penalized estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 54-75, March.
- Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
- Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Bartosz Uniejewski, 2024.
"Regularization for electricity price forecasting,"
Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(3), pages 267-286.
- Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Papers 2404.03968, arXiv.org.
- Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
- Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
- Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
- Loann David Denis Desboulets, 2018.
"A Review on Variable Selection in Regression Analysis,"
Econometrics, MDPI, vol. 6(4), pages 1-27, November.
- Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Post-Print hal-01954386, HAL.
- Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
- Li, Peili & Jiao, Yuling & Lu, Xiliang & Kang, Lican, 2022. "A data-driven line search rule for support recovery in high-dimensional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
More about this item
Keywords
Variable separation algorithm; Non-convex regularization; Optimization; Convergence; Acceleration;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:147:y:2020:i:c:s0167947320300347. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.