New bounds for subset selection from conic relaxations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2021.07.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mazumder, Rahul & Friedman, Jerome H. & Hastie, Trevor, 2011. "SparseNet: Coordinate Descent With Nonconvex Penalties," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1125-1138.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Miyashiro, Ryuhei & Takano, Yuichi, 2015. "Mixed integer second-order cone programming formulations for variable selection in linear regression," European Journal of Operational Research, Elsevier, vol. 247(3), pages 721-731.
- Xiaotong Shen & Wei Pan & Yunzhang Zhu & Hui Zhou, 2013. "On constrained and regularized high-dimensional regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 807-832, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
- Bartosz Uniejewski, 2024.
"Regularization for electricity price forecasting,"
Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(3), pages 267-286.
- Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Papers 2404.03968, arXiv.org.
- Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
- Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
- Anda Tang & Pei Quan & Lingfeng Niu & Yong Shi, 2022. "A Survey for Sparse Regularization Based Compression Methods," Annals of Data Science, Springer, vol. 9(4), pages 695-722, August.
- Wenxing Zhu & Huating Huang & Lanfan Jiang & Jianli Chen, 0. "Weighted thresholding homotopy method for sparsity constrained optimization," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-29.
- Leonardo Di Gangi & M. Lapucci & F. Schoen & A. Sortino, 2019. "An efficient optimization approach for best subset selection in linear regression, with application to model selection and fitting in autoregressive time-series," Computational Optimization and Applications, Springer, vol. 74(3), pages 919-948, December.
- Rahul Ghosal & Arnab Maity & Timothy Clark & Stefano B. Longo, 2020. "Variable selection in functional linear concurrent regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 565-587, June.
- Po-Hsien Huang & Hung Chen & Li-Jen Weng, 2017. "A Penalized Likelihood Method for Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 329-354, June.
- Dai, Linlin & Chen, Kani & Sun, Zhihua & Liu, Zhenqiu & Li, Gang, 2018. "Broken adaptive ridge regression and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 334-351.
- Xiang Zhang & Yichao Wu & Lan Wang & Runze Li, 2016. "Variable selection for support vector machines in moderately high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 53-76, January.
- VÁZQUEZ-ALCOCER, Alan & SCHOEN, Eric D. & GOOS, Peter, 2018. "A mixed integer optimization approach for model selection in screening experiments," Working Papers 2018007, University of Antwerp, Faculty of Business and Economics.
- Hu, Jianwei & Chai, Hao, 2013. "Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 96-114.
- Minh Pham & Xiaodong Lin & Andrzej Ruszczyński & Yu Du, 2021. "An outer–inner linearization method for non-convex and nondifferentiable composite regularization problems," Journal of Global Optimization, Springer, vol. 81(1), pages 179-202, September.
- Yingying Fan & Jinchi Lv, 2014. "Asymptotic properties for combined L1 and concave regularization," Biometrika, Biometrika Trust, vol. 101(1), pages 57-70.
- Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
- Runmin Shi & Faming Liang & Qifan Song & Ye Luo & Malay Ghosh, 2018. "A Blockwise Consistency Method for Parameter Estimation of Complex Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 179-223, December.
- Siwei Xia & Yuehan Yang & Hu Yang, 2022. "Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 255-277, March.
- He, Xin & Mao, Xiaojun & Wang, Zhonglei, 2024. "Nonparametric augmented probability weighting with sparsity," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
- Liu, Wenchen & Tang, Yincai & Wu, Xianyi, 2020. "Separating variables to accelerate non-convex regularized optimization," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
More about this item
Keywords
Combinatorial optimization; Subset selection; Convex relaxation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:298:y:2022:i:2:p:425-438. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.