Rotation to sparse loadings using Lp losses and related inference problems
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Y Chen & X Li, 2022. "Determining the number of factors in high-dimensional generalized latent factor models [Eigenvalue ratio test for the number of factors]," Biometrika, Biometrika Trust, vol. 109(3), pages 769-782.
- Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
- Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
- Robert Jennrich, 2002. "A simple general method for oblique rotation," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 7-19, March.
- Haoran Zhang & Yunxiao Chen & Xiaoou Li, 2020. "A Note on Exploratory Item Factor Analysis by Singular Value Decomposition," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 358-372, June.
- Elena Geminiani & Giampiero Marra & Irini Moustaki, 2021. "Single- and Multiple-Group Penalized Factor Analysis: A Trust-Region Algorithm Approach with Integrated Automatic Multiple Tuning Parameter Selection," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 65-95, March.
- Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
- Nickolay Trendafilov, 2014. "From simple structure to sparse components: a review," Computational Statistics, Springer, vol. 29(3), pages 431-454, June.
- Geminiani, Elena & Marra, Giampiero & Moustaki, Irini, 2021. "Single and multiple-group penalized factor analysis: a trust-region algorithm approach with integrated automatic multiple tuning parameter selection," LSE Research Online Documents on Economics 108873, London School of Economics and Political Science, LSE Library.
- Chen, Yunxiao & Li, Xiaoou, 2022. "Determining the number of factors in high-dimensional generalized latent factor models," LSE Research Online Documents on Economics 111574, London School of Economics and Political Science, LSE Library.
- Mazumder, Rahul & Friedman, Jerome H. & Hastie, Trevor, 2011. "SparseNet: Coordinate Descent With Nonconvex Penalties," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1125-1138.
- Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, November.
- Robert Jennrich, 2006. "Rotation to Simple Loadings Using Component Loss Functions: The Oblique Case," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 173-191, March.
- Karl Jöreskog & Arthur Goldberger, 1972. "Factor analysis by generalized least squares," Psychometrika, Springer;The Psychometric Society, vol. 37(3), pages 243-260, September.
- R. Jennrich & P. Sampson, 1966. "Rotation for simple loadings," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 313-323, September.
- Robert Jennrich, 2004. "Rotation to simple loadings using component loss functions: The orthogonal case," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 257-273, June.
- Machado, José A.F., 1993. "Robust Model Selection and M-Estimation," Econometric Theory, Cambridge University Press, vol. 9(3), pages 478-493, June.
- Zhang, Haoran & Chen, Yunxiao & Li, Xiaoou, 2020. "A note on exploratory item factor analysis by singular value decomposition," LSE Research Online Documents on Economics 104166, London School of Economics and Political Science, LSE Library.
- Robert Jennrich, 1973. "Standard errors for obliquely rotated factor loadings," Psychometrika, Springer;The Psychometric Society, vol. 38(4), pages 593-604, December.
- Henk Kiers, 1994. "Simplimax: Oblique rotation to an optimal target with simple structure," Psychometrika, Springer;The Psychometric Society, vol. 59(4), pages 567-579, December.
- Yunxiao Chen & Xiaoou Li & Siliang Zhang, 2019. "Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 124-146, March.
- Claude Archer & Robert Jennrich, 1973. "Standard errors for rotated factor loadings," Psychometrika, Springer;The Psychometric Society, vol. 38(4), pages 581-592, December.
- Yunxiao Chen & Xiaoou Li & Siliang Zhang, 2020. "Structured Latent Factor Analysis for Large-scale Data: Identifiability, Estimability, and Their Implications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1756-1770, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xinyi Liu & Gabriel Wallin & Yunxiao Chen & Irini Moustaki, 2023. "Rotation to Sparse Loadings Using $$L^p$$ L p Losses and Related Inference Problems," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 527-553, June.
- Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
- Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
- Rosember Guerra-Urzola & Katrijn Van Deun & Juan C. Vera & Klaas Sijtsma, 2021. "A Guide for Sparse PCA: Model Comparison and Applications," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 893-919, December.
- Siliang Zhang & Yunxiao Chen, 2022. "Computation for Latent Variable Model Estimation: A Unified Stochastic Proximal Framework," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1473-1502, December.
- Zhang, Siliang & Chen, Yunxiao, 2022. "Computation for latent variable model estimation: a unified stochastic proximal framework," LSE Research Online Documents on Economics 114489, London School of Economics and Political Science, LSE Library.
- Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
- Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
- Robert Boik, 2008. "Newton Algorithms for Analytic Rotation: an Implicit Function Approach," Psychometrika, Springer;The Psychometric Society, vol. 73(2), pages 231-259, June.
- Guangjian Zhang & Minami Hattori & Lauren A. Trichtinger, 2023. "Rotating Factors to Simplify Their Structural Paths," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 865-887, September.
- Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," PSE Working Papers halshs-03626503, HAL.
- Guangjian Zhang & Kristopher J. Preacher, 2015. "Factor Rotation and Standard Errors in Exploratory Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 40(6), pages 579-603, December.
- Chen, Yunxiao & Li, Xiaoou, 2024. "A note on entrywise consistency for mixed-data matrix completion," LSE Research Online Documents on Economics 124682, London School of Economics and Political Science, LSE Library.
- Guerra Urzola, Rosember & Van Deun, Katrijn & Vera, J. C. & Sijtsma, K., 2021. "A guide for sparse PCA : Model comparison and applications," Other publications TiSEM 4d35b931-7f49-444b-b92f-a, Tilburg University, School of Economics and Management.
- Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014.
"Bayesian exploratory factor analysis,"
Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
- Gabriella Conti & Sylvia Fruehwirth-Schnatter & James J. Heckman & Remi Piatek, 2014. "Bayesian Exploratory Factor Analysis," Working Papers 2014-014, Human Capital and Economic Opportunity Working Group.
- Gabriella Conti & Sylvia Frühwirth-Schnatter & James J. Heckman & Rémi Piatek, 2014. "Bayesian Exploratory Factor Analysis," NRN working papers 2014-08, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
- Gabriella Conti & Sylvia Frühwirth-Schnatter & James Heckman & Rémi Piatek, 2014. "Bayesian exploratory factor analysis," CeMMAP working papers CWP30/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Gabriella Conti & Sylvia Frühwirth-Schnatter & James Heckman & Rémi Piatek, 2014. "Bayesian exploratory factor analysis," CeMMAP working papers 30/14, Institute for Fiscal Studies.
- Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian Exploratory Factor Analysis," IZA Discussion Papers 8338, Institute of Labor Economics (IZA).
- Yoav Bergner & Peter Halpin & Jill-Jênn Vie, 2022. "Multidimensional Item Response Theory in the Style of Collaborative Filtering," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 266-288, March.
- Boik, Robert J., 2008. "An implicit function approach to constrained optimization with applications to asymptotic expansions," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 465-489, March.
- Christopher J. Urban & Daniel J. Bauer, 2021. "A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 1-29, March.
- Robert Jennrich & Peter Bentler, 2012. "Exploratory Bi-factor Analysis: The Oblique Case," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 442-454, July.
- Ikemoto, Hiroki & Adachi, Kohei, 2016. "Sparse Tucker2 analysis of three-way data subject to a constrained number of zero elements in a core array," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 1-18.
More about this item
Keywords
component loss function; analytic rotation; regularised estimation; model selection; confidence interval;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:118349. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.