IDEAS home Printed from https://ideas.repec.org/r/bes/jnlasa/v101y2006p1607-1618.html
   My bibliography  Save this item

Regression and Weighting Methods for Causal Inference Using Instrumental Variables

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sokbae Lee & Ryo Okui & Yoon†Jae Whang, 2017. "Doubly robust uniform confidence band for the conditional average treatment effect function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1207-1225, November.
  2. Essilfie, Felix Larry, 2018. "Varietal seed technology and household income of maize farmers: An application of the doubly robust model," Technology in Society, Elsevier, vol. 55(C), pages 85-91.
  3. Luke Keele & Dylan Small & Richard Grieve, 2017. "Randomization-based instrumental variables methods for binary outcomes with an application to the ‘IMPROVE’ trial," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 569-586, February.
  4. Markus Frölich & Martin Huber, 2017. "Direct and indirect treatment effects–causal chains and mediation analysis with instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1645-1666, November.
  5. Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
  6. Hans Fricke & Markus Frölich & Martin Huber & Michael Lechner, 2020. "Endogeneity and non‐response bias in treatment evaluation – nonparametric identification of causal effects by instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 481-504, August.
  7. Tymon Sloczynski & S. Derya Uysal & Jeffrey M. Wooldridge & Derya Uysal, 2022. "Abadie's Kappa and Weighting Estimators of the Local Average Treatment Effect," CESifo Working Paper Series 9715, CESifo.
  8. Abhinandan Dalal & Patrick Blobaum & Shiva Kasiviswanathan & Aaditya Ramdas, 2024. "Anytime-Valid Inference for Double/Debiased Machine Learning of Causal Parameters," Papers 2408.09598, arXiv.org, revised Sep 2024.
  9. Paul S. Clarke & Frank Windmeijer, 2012. "Instrumental Variable Estimators for Binary Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1638-1652, December.
  10. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
  11. Foster, E. Michael & McCombs-Thornton, Kimberly, 2013. "Child welfare and the challenge of causal inference," Children and Youth Services Review, Elsevier, vol. 35(7), pages 1130-1142.
  12. Chunrong Ai & Lukang Huang & Zheng Zhang, 2018. "A Simple and Efficient Estimation of the Average Treatment Effect in the Presence of Unmeasured Confounders," Papers 1807.05678, arXiv.org.
  13. Tymon Sloczynski & S. Derya Uysal & Jeffrey M. Wooldridge & Derya Uysal, 2022. "Doubly Robust Estimation of Local Average Treatment Effects Using Inverse Probability Weighted Regression Adjustment," CESifo Working Paper Series 10105, CESifo.
  14. Hugo Bodory & Martin Huber & Michael Lechner, 2024. "The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2053-2078, October.
  15. Byeong Yeob Choi, 2021. "Instrumental variable estimation of truncated local average treatment effects," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-12, April.
  16. Markus Frölich & Martin Huber, 2014. "Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
  17. Moler-Zapata, S.; & Grieve, R.; & Basu, A.; & O'Neill, S.;, 2022. "How does a local Instrumental Variable Method perform across settings with instruments of differing strengths? A simulation study and an evaluation of emergency surgery," Health, Econometrics and Data Group (HEDG) Working Papers 22/18, HEDG, c/o Department of Economics, University of York.
  18. Ting Ye & Ashkan Ertefaie & James Flory & Sean Hennessy & Dylan S. Small, 2023. "Instrumented difference‐in‐differences," Biometrics, The International Biometric Society, vol. 79(2), pages 569-581, June.
  19. Rothe, Christoph & Firpo, Sergio Pinheiro, 2013. "Semiparametric estimation and inference using doubly robust moment conditions," Textos para discussão 330, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
  20. Tymon Sloczynski & S. Derya Uysal & Jeffrey M. Wooldridge & Derya Uysal, 2022. "Abadie's Kappa and Weighting Estimators of the Local Average Treatment Effect," CESifo Working Paper Series 9715, CESifo.
  21. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
  22. Silvia Moler‐Zapata & Richard Grieve & Anirban Basu & Stephen O’Neill, 2023. "How does a local instrumental variable method perform across settings with instruments of differing strengths? A simulation study and an evaluation of emergency surgery," Health Economics, John Wiley & Sons, Ltd., vol. 32(9), pages 2113-2126, September.
  23. Zhiqiang Tan, 2023. "Discussion on “Instrumented difference‐in‐differences” by Ye, Ertefaie, Flory, Hennessy, Small," Biometrics, The International Biometric Society, vol. 79(2), pages 587-591, June.
  24. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
  25. Choi, Byeong Yeob & Lee, Jae Won, 2019. "The isotonic regression approach for an instrumental variable estimation of the potential outcome distributions for compliers," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 134-144.
  26. James Robins & Andrea Rotnitzky & Stijn Vansteelandt, 2007. "Discussions," Biometrics, The International Biometric Society, vol. 63(3), pages 650-653, September.
  27. Yukun Ma & Pedro H. C. Sant'Anna & Yuya Sasaki & Takuya Ura, 2023. "Doubly Robust Estimators with Weak Overlap," Papers 2304.08974, arXiv.org, revised Apr 2023.
  28. Pohlmeier, Winfried & Seiberlich, Ruben & Uysal, Selver Derya, 2016. "A simple and successful shrinkage method for weighting estimators of treatment effects," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 512-525.
  29. Buechel, Berno & Gangl, Selina & Huber, Martin, 2023. "How residence permits affect the labor market attachment of foreign workers: Evidence from a migration lottery in Liechtenstein," European Economic Review, Elsevier, vol. 152(C).
  30. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
  31. Uysal, S. Derya, 2013. "Doubly Robust Estimation of Causal Effects with Multivalued Treatments," Economics Series 297, Institute for Advanced Studies.
  32. Fan Yang & José R. Zubizarreta & Dylan S. Small & Scott Lorch & Paul R. Rosenbaum, 2014. "Dissonant Conclusions When Testing the Validity of an Instrumental Variable," The American Statistician, Taylor & Francis Journals, vol. 68(4), pages 253-263, November.
  33. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
  34. Yayan Satyakti, 2023. "The Effect of Applying Sustainability (Maqasid Shariah) and Competition on Islamic Bank Financing," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
  35. Shinohara Russell T. & Frangakis Constantine E. & Platz Elizabeth & Tsilidis Konstantinos, 2012. "Designs Combining Instrumental Variables with Case-Control: Estimating Principal Strata Causal Effects," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-21, January.
  36. Myoung‐jae Lee, 2021. "Instrument residual estimator for any response variable with endogenous binary treatment," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 612-635, July.
  37. Manu Navjeevan & Rodrigo Pinto & Andres Santos, 2023. "Identification and Estimation in a Class of Potential Outcomes Models," Papers 2310.05311, arXiv.org.
  38. Liu Bin & Yu Cindy Long & Price Michael Joseph & Jiang Yan, 2018. "Generalized Method of Moments Estimators for Multiple Treatment Effects Using Observational Data from Complex Surveys," Journal of Official Statistics, Sciendo, vol. 34(3), pages 753-784, September.
  39. repec:hhs:ifauwp:2025_012 is not listed on IDEAS
  40. David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.