IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp1094-1109.html
   My bibliography  Save this article

The added value of high resolution regional reanalyses for wind power applications

Author

Listed:
  • Frank, Christopher W.
  • Pospichal, Bernhard
  • Wahl, Sabrina
  • Keller, Jan D.
  • Hense, Andreas
  • Crewell, Susanne

Abstract

Atmospheric reanalyses are the only source of spatial and temporal gridded wind information at wind turbine height providing data over several decades in the past. The application potential of reanalyses in the renewable energy sector depends strongly on the quality of the meteorological quantities. While global reanalyses have a resolution of typically 50 km, new regional reanalyses COSMO-REA6 and COSMO-REA2 have about 6 km and 2 km horizontal grid spacing, respectively. Here, we investigate the added value of the new regional reanalyses for the renewable energy sector, especially their application potential for site assessment. Four well established wind towers in Europe are used as reference for this purpose. We find regional reanalyses performing significantly better or at least similar to global reanalyses. Especially marginal distributions show significant improvements e.g. the most extreme temporal wind changes (ramp rates) at typical hub-heights are underrepresented by global reanalyses between −80 and −43% while COSMO-REA2 represents them with relative errors between −14 and +9%. Considering biases, mean absolute errors, and correlations most significant improvements occur close to ground and in areas with complex terrain. Moreover, vertically extrapolated wind measurements which are commonly used for site assessment show a stronger site dependency in their performance than reanalyses.

Suggested Citation

  • Frank, Christopher W. & Pospichal, Bernhard & Wahl, Sabrina & Keller, Jan D. & Hense, Andreas & Crewell, Susanne, 2020. "The added value of high resolution regional reanalyses for wind power applications," Renewable Energy, Elsevier, vol. 148(C), pages 1094-1109.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:1094-1109
    DOI: 10.1016/j.renene.2019.09.138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811931482X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ingeborg Graabak & Magnus Korpås, 2016. "Variability Characteristics of European Wind and Solar Power Resources—A Review," Energies, MDPI, vol. 9(6), pages 1-31, June.
    2. Kubik, M.L. & Brayshaw, D.J. & Coker, P.J. & Barlow, J.F., 2013. "Exploring the role of reanalysis data in simulating regional wind generation variability over Northern Ireland," Renewable Energy, Elsevier, vol. 57(C), pages 558-561.
    3. Rose, Stephen & Apt, Jay, 2015. "What can reanalysis data tell us about wind power?," Renewable Energy, Elsevier, vol. 83(C), pages 963-969.
    4. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    5. Bañuelos-Ruedas, F. & Angeles-Camacho, C. & Rios-Marcuello, S., 2010. "Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2383-2391, October.
    6. Gualtieri, Giovanni & Secci, Sauro, 2011. "Comparing methods to calculate atmospheric stability-dependent wind speed profiles: A case study on coastal location," Renewable Energy, Elsevier, vol. 36(8), pages 2189-2204.
    7. Nelson, James & Johnston, Josiah & Mileva, Ana & Fripp, Matthias & Hoffman, Ian & Petros-Good, Autumn & Blanco, Christian & Kammen, Daniel M., 2012. "High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures," Energy Policy, Elsevier, vol. 43(C), pages 436-447.
    8. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    9. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    10. Henckes, Philipp & Knaut, Andreas & Obermüller, Frank & Frank, Christopher, 2018. "The benefit of long-term high resolution wind data for electricity system analysis," Energy, Elsevier, vol. 143(C), pages 934-942.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    2. Akintayo T. Abolude & Wen Zhou & Akintomide Afolayan Akinsanola, 2020. "Evaluation and Projections of Wind Power Resources over China for the Energy Industry Using CMIP5 Models," Energies, MDPI, vol. 13(10), pages 1-16, May.
    3. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    4. Murcia, Juan Pablo & Koivisto, Matti Juhani & Luzia, Graziela & Olsen, Bjarke T. & Hahmann, Andrea N. & Sørensen, Poul Ejnar & Als, Magnus, 2022. "Validation of European-scale simulated wind speed and wind generation time series," Applied Energy, Elsevier, vol. 305(C).
    5. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    2. Madeleine McPherson & Theofilos Sotiropoulos-Michalakakos & LD Danny Harvey & Bryan Karney, 2017. "An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset," Energies, MDPI, vol. 10(7), pages 1-14, July.
    3. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    4. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
    5. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
    6. Bianchi, Emilio & Guozden, Tomás & Kozulj, Roberto, 2022. "Assessing low frequency variations in solar and wind power and their climatic teleconnections," Renewable Energy, Elsevier, vol. 190(C), pages 560-571.
    7. Zhang, Hengxu & Cao, Yongji & Zhang, Yi & Terzija, Vladimir, 2018. "Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data," Applied Energy, Elsevier, vol. 216(C), pages 172-182.
    8. Henckes, Philipp & Frank, Christopher & Küchler, Nils & Peter, Jakob & Wagner, Johannes, 2020. "Uncertainty estimation of investment planning models under high shares of renewables using reanalysis data," Energy, Elsevier, vol. 208(C).
    9. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Drücke, Jaqueline & Borsche, Michael & James, Paul & Kaspar, Frank & Pfeifroth, Uwe & Ahrens, Bodo & Trentmann, Jörg, 2021. "Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification," Renewable Energy, Elsevier, vol. 164(C), pages 1254-1266.
    11. Frank, Christopher & Fiedler, Stephanie & Crewell, Susanne, 2021. "Balancing potential of natural variability and extremes in photovoltaic and wind energy production for European countries," Renewable Energy, Elsevier, vol. 163(C), pages 674-684.
    12. Heuberger, Clara F. & Bains, Praveen K. & Mac Dowell, Niall, 2020. "The EV-olution of the power system: A spatio-temporal optimisation model to investigate the impact of electric vehicle deployment," Applied Energy, Elsevier, vol. 257(C).
    13. Kena Likassa Nefabas & Lennart Söder & Mengesha Mamo & Jon Olauson, 2021. "Modeling of Ethiopian Wind Power Production Using ERA5 Reanalysis Data," Energies, MDPI, vol. 14(9), pages 1-17, April.
    14. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    15. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
    16. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
    17. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    18. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    19. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:1094-1109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.