IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v21y2009i5.html
   My bibliography  Save this article

An analysis of life expectancy and economic production using expectile frontier zones

Author

Listed:
  • Sabine K. Schnabel

    (Wageningen University and Research)

  • Paul Eilers

    (Erasmus University Medical Center)

Abstract

The wealth of a country is assumed to have a strong non-linear influence on the life expectancy of its inhabitants. We follow up on research by Preston and study the relationship with gross domestic product. Smooth curves for the average but also for (upper) frontiers are constructed by a combination of least asymmetrically weighted squares and P-splines. Guidelines are given for optimizing the amount of smoothing and the definition of frontiers. The model is applied to a large set of countries in different years. It is also used to estimate life expectancy performance for individual countries and to show how it changed over time.

Suggested Citation

  • Sabine K. Schnabel & Paul Eilers, 2009. "An analysis of life expectancy and economic production using expectile frontier zones," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 21(5), pages 109-134.
  • Handle: RePEc:dem:demres:v:21:y:2009:i:5
    DOI: 10.4054/DemRes.2009.21.5
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol21/5/21-5.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2009.21.5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Schnabel, Sabine K. & Eilers, Paul H.C., 2009. "Optimal expectile smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4168-4177, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stahlschmidt, Stephan & Eckardt, Matthias & Härdle, Wolfgang Karl, 2014. "Expectile treatment effects: An efficient alternative to compute the distribution of treatment effects," SFB 649 Discussion Papers 2014-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. Xianhua Dai & Wolfgang Karl Härdle & Keming Yu, 2016. "Do maternal health problems influence child's worrying status? Evidence from the British Cohort Study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2941-2955, December.
    3. Farooq, Muhammad & Steinwart, Ingo, 2017. "An SVM-like approach for expectile regression," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 159-181.
    4. Dorn, Florian & Lange, Berit & Braml, Martin & Gstrein, David & Nyirenda, John L.Z. & Vanella, Patrizio & Winter, Joachim & Fuest, Clemens & Krause, Gérard, 2023. "The challenge of estimating the direct and indirect effects of COVID-19 interventions – Toward an integrated economic and epidemiological approach," Economics & Human Biology, Elsevier, vol. 49(C).
    5. Duran, Esra Akdeniz & Guo, Mengmeng & Härdle, Wolfgang Karl, 2010. "A confidence corridor for expectile functions," SFB 649 Discussion Papers 2011-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Rafia Shafi & Samreen Fatima, 2019. "Relationship between GDP, Life Expectancy and Growth Rate of G7 Countries," International Journal of Sciences, Office ijSciences, vol. 8(06), pages 74-79, June.
    7. repec:hum:wpaper:sfb649dp2014-059 is not listed on IDEAS
    8. Anthopolos, Rebecca & Becker, Charles M., 2010. "Global Infant Mortality: Correcting for Undercounting," World Development, Elsevier, vol. 38(4), pages 467-481, April.
    9. Fabio Bellini & Bernhard Klar & Alfred Müller, 2018. "Expectiles, Omega Ratios and Stochastic Ordering," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 855-873, September.
    10. Man, Rebeka & Tan, Kean Ming & Wang, Zian & Zhou, Wen-Xin, 2024. "Retire: Robust expectile regression in high dimensions," Journal of Econometrics, Elsevier, vol. 239(2).
    11. Guo, Mengmeng & Zhou, Lhan & Huang, Jianhua Z. & Härdle, Wolfgang Karl, 2013. "Functional data analysis of generalized quantile regressions," SFB 649 Discussion Papers 2013-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Igor Fedotenkov, 2016. "Labour Shares, Fertility and Longevity in an OLG model," Bank of Lithuania Working Paper Series 28, Bank of Lithuania.
    13. Osipenko, Maria, 2021. "Directional assessment of traffic flow extremes," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 353-369.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    2. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    4. repec:hum:wpaper:sfb649dp2017-027 is not listed on IDEAS
    5. Burdejova, P. & Härdle, W. & Kokoszka, P. & Xiong, Q., 2017. "Change point and trend analyses of annual expectile curves of tropical storms," Econometrics and Statistics, Elsevier, vol. 1(C), pages 101-117.
    6. Xianhua Dai & Wolfgang Karl Härdle & Keming Yu, 2016. "Do maternal health problems influence child's worrying status? Evidence from the British Cohort Study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2941-2955, December.
    7. Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
    8. Songfeng Zheng, 2021. "KLERC: kernel Lagrangian expectile regression calculator," Computational Statistics, Springer, vol. 36(1), pages 283-311, March.
    9. Zhao, Jun & Chen, Yingyu & Zhang, Yi, 2018. "Expectile regression for analyzing heteroscedasticity in high dimension," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 304-311.
    10. Lina Liao & Cheolwoo Park & Hosik Choi, 2019. "Penalized expectile regression: an alternative to penalized quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 409-438, April.
    11. Zhang, Feipeng & Li, Qunhua, 2017. "A continuous threshold expectile model," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 49-66.
    12. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    13. Jiangyan Wang & Miao Yang & Anandamayee Majumdar, 2018. "Comparative study and sensitivity analysis of skewed spatial processes," Computational Statistics, Springer, vol. 33(1), pages 75-98, March.
    14. repec:hum:wpaper:sfb649dp2015-029 is not listed on IDEAS
    15. Marco Alfò & Maria Francesca Marino & Maria Giovanna Ranalli & Nicola Salvati & Nikos Tzavidis, 2021. "M‐quantile regression for multivariate longitudinal data with an application to the Millennium Cohort Study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 122-146, January.
    16. Petra Burdejová & Wolfgang K. Härdle, 2019. "Dynamic semi-parametric factor model for functional expectiles," Computational Statistics, Springer, vol. 34(2), pages 489-502, June.
    17. Voudouris, Vlasios & Matsumoto, Ken'ichi & Sedgwick, John & Rigby, Robert & Stasinopoulos, Dimitrios & Jefferson, Michael, 2014. "Exploring the production of natural gas through the lenses of the ACEGES model," Energy Policy, Elsevier, vol. 64(C), pages 124-133.
    18. Huang, Xiaolin & Shi, Lei & Suykens, Johan A.K., 2014. "Asymmetric least squares support vector machine classifiers," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 395-405.
    19. Kim, Joonpyo & Oh, Hee-Seok, 2020. "Pseudo-quantile functional data clustering," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    20. C. Adam & I. Gijbels, 2022. "Local polynomial expectile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 341-378, April.
    21. Stahlschmidt, Stephan & Eckardt, Matthias & Härdle, Wolfgang Karl, 2014. "Expectile treatment effects: An efficient alternative to compute the distribution of treatment effects," SFB 649 Discussion Papers 2014-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    22. Luciano Stefanini, 2015. "Quantile and expectile smoothing by F-transform," Working Papers 1512, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2015.

    More about this item

    Keywords

    life expectancy; gross domestic product; smoothing; least asymmetrically weighted squares;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:21:y:2009:i:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.