IDEAS home Printed from https://ideas.repec.org/p/cbt/econwp/10-37.html
   My bibliography  Save this paper

Risk Management of Precious Metals

Author

Listed:

Abstract

This paper examines volatility and correlation dynamics in price returns of gold, silver, platinum and palladium, and explores the corresponding risk management implications for market risk and hedging. Value-at-Risk (VaR) is used to analyze the downside market risk associated with investments in precious metals, and to design optimal risk management strategies. We compute the VaR for major precious metals using the calibrated RiskMetrics, different GARCH models, and the semi-parametric Filtered Historical Simulation approach. Different risk management strategies are suggested, and the best approach for estimating VaR based on conditional and unconditional statistical tests is documented. The economic importance of the results is highlighted by assessing the daily capital charges from the estimated VaRs. The risk-minimizing portfolio weights and dynamic hedge ratios between different metal groups are also analyzed.

Suggested Citation

  • Shawkat Hammoudeh & Farooq Malik & Michael McAleer, 2010. "Risk Management of Precious Metals," Working Papers in Economics 10/37, University of Canterbury, Department of Economics and Finance.
  • Handle: RePEc:cbt:econwp:10/37
    as

    Download full text from publisher

    File URL: https://repec.canterbury.ac.nz/cbt/econwp/1037.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dirk G. Baur & Brian M. Lucey, 2010. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
    2. David Cabedo, J. & Moya, Ismael, 2003. "Estimating oil price 'Value at Risk' using the historical simulation approach," Energy Economics, Elsevier, vol. 25(3), pages 239-253, May.
    3. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    4. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    5. Gita Persand & Chris Brooks, 2003. "Volatility forecasting for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 1-22.
    6. Michael McAleer & Les Oxley, 2005. "The Ten Commandments for Academics," Journal of Economic Surveys, Wiley Blackwell, vol. 19(5), pages 823-826, December.
    7. Hammoudeh, Shawkat M. & Yuan, Yuan & McAleer, Michael & Thompson, Mark A., 2010. "Precious metals-exchange rate volatility transmissions and hedging strategies," International Review of Economics & Finance, Elsevier, vol. 19(4), pages 633-647, October.
    8. Juan‐Ángel Jiménez‐Martín & Michael McAleer & Teodosio Pérez‐Amaral, 2009. "The Ten Commandments For Managing Value At Risk Under The Basel Ii Accord," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 850-855, December.
    9. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
    10. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    11. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    12. Michael McAleer, 2009. "The Ten Commandments For Optimizing Value‐At‐Risk And Daily Capital Charges," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 831-849, December.
    13. Giovanni Barone‐Adesi & Kostas Giannopoulos & Les Vosper, 1999. "VaR without correlations for portfolios of derivative securities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(5), pages 583-602, August.
    14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    15. Michael McAleer & Bernardo da Veiga, 2008. "Single-index and portfolio models for forecasting value-at-risk thresholds," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 217-235.
    16. Pérignon, Christophe & Deng, Zi Yin & Wang, Zhi Jun, 2008. "Do banks overstate their Value-at-Risk?," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 783-794, May.
    17. Hammoudeh, Shawkat & Yuan, Yuan, 2008. "Metal volatility in presence of oil and interest rate shocks," Energy Economics, Elsevier, vol. 30(2), pages 606-620, March.
    18. Ewing, Bradley T. & Malik, Farooq, 2005. "Re-examining the asymmetric predictability of conditional variances: The role of sudden changes in variance," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2655-2673, October.
    19. Michael Mcaleer & Bernardo da Veiga, 2008. "Forecasting value-at-risk with a parsimonious portfolio spillover GARCH (PS-GARCH) model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(1), pages 1-19.
    20. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    21. McAleer, M.J. & Jiménez-Martín, J.A. & Pérez-Amaral, T., 2008. "A decision rule to minimize daily capital charges in forecasting value-at-risk," Econometric Institute Research Papers EI 2008-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    22. Pérignon, Christophe & Smith, Daniel R., 2010. "The level and quality of Value-at-Risk disclosure by commercial banks," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 362-377, February.
    23. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    24. Jonathan Andrew Batten & Brian M. Lucey, 2010. "Volatility in the gold futures market," Applied Economics Letters, Taylor & Francis Journals, vol. 17(2), pages 187-190, January.
    25. Chng, Michael T., 2009. "Economic linkages across commodity futures: Hedging and trading implications," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 958-970, May.
    26. Ahmed A. A. Khalifa & Hong Miao & Sanjay Ramchander, 2011. "Return distributions and volatility forecasting in metal futures markets: Evidence from gold, silver, and copper," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(1), pages 55-80, January.
    27. Giovanni Barone‐Adesi & Kostas Giannopoulos & Les Vosper, 2002. "Backtesting Derivative Portfolios with Filtered Historical Simulation (FHS)," European Financial Management, European Financial Management Association, vol. 8(1), pages 31-58, March.
    28. Sari, Ramazan & Hammoudeh, Shawkat & Soytas, Ugur, 2010. "Dynamics of oil price, precious metal prices, and exchange rate," Energy Economics, Elsevier, vol. 32(2), pages 351-362, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio & Santos, Paulo Araújo, 2013. "GFC-robust risk management under the Basel Accord using extreme value methodologies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 223-237.
    2. Hood, Matthew & Malik, Farooq, 2018. "Estimating downside risk in stock returns under structural breaks," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 102-112.
    3. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    4. André A. P. Santos & Francisco J. Nogales & Esther Ruiz, 2013. "Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 400-441, March.
    5. Casarin, Roberto & Chang, Chia-Lin & Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio, 2013. "Risk management of risk under the Basel Accord: A Bayesian approach to forecasting Value-at-Risk of VIX futures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 183-204.
    6. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    7. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    8. McAleer, Michael & Jimenez-Martin, Juan-Angel & Perez-Amaral, Teodosio, 2013. "Has the Basel Accord improved risk management during the global financial crisis?," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 250-265.
    9. Bradley T. Ewing & Farooq Malik & Hassan Anjum, 2019. "Forecasting value‐at‐risk in oil prices in the presence of volatility shifts," Review of Financial Economics, John Wiley & Sons, vol. 37(3), pages 341-350, July.
    10. Michael McAleer & Juan‐Ángel Jiménez‐Martín & Teodosio Pérez‐Amaral, 2013. "International Evidence on GFC‐Robust Forecasts for Risk Management under the Basel Accord," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(3), pages 267-288, April.
    11. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    12. McAleer, Michael & Jimenez-Martin, Juan-Angel & Perez-Amaral, Teodosio, 2013. "GFC-robust risk management strategies under the Basel Accord," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 97-111.
    13. Stavros Degiannakis & Pamela Dent & Christos Floros, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
    14. Fries, Christian P. & Nigbur, Tobias & Seeger, Norman, 2017. "Displaced relative changes in historical simulation: Application to risk measures of interest rates with phases of negative rates," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 175-198.
    15. Hammoudeh, Shawkat & Araújo Santos, Paulo & Al-Hassan, Abdullah, 2013. "Downside risk management and VaR-based optimal portfolios for precious metals, oil and stocks," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 318-334.
    16. Anjum, Hassan & Malik, Farooq, 2020. "Forecasting risk in the US Dollar exchange rate under volatility shifts," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    17. da Veiga, B. & Chan, F. & McAleer, M.J., 2009. "It Pays to Violate: How Effective are the Basel Accord Penalties?," Econometric Institute Research Papers EI 2009-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Chia-Lin Chang & Juan-à ngel Jiménez-Martín & Michael McAleer & Teodosio Pérez-Amaral, 2011. "Risk Management of Risk under the Basel Accord: Forecasting Value-at-Risk of VIX Futures," KIER Working Papers 761, Kyoto University, Institute of Economic Research.
    19. O’Brien, James & Szerszeń, Paweł J., 2017. "An evaluation of bank measures for market risk before, during and after the financial crisis," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 215-234.
    20. Degiannakis, Stavros & Floros, Christos & Dent, Pamela, 2013. "Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence," International Review of Financial Analysis, Elsevier, vol. 27(C), pages 21-33.

    More about this item

    Keywords

    Precious metals; conditional volatility; risk management; value-at-risk;
    All these keywords.

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbt:econwp:10/37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Albert Yee (email available below). General contact details of provider: https://edirc.repec.org/data/decannz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.