IDEAS home Printed from https://ideas.repec.org/p/rba/rbardp/rdp9708.html
   My bibliography  Save this paper

Measuring Traded Market Risk: Value-at-risk and Backtesting Techniques

Author

Listed:
  • Colleen Cassidy

    (Reserve Bank of Australia)

  • Marianne Gizycki

    (Reserve Bank of Australia)

Abstract

The proposed market-risk capital-adequacy framework, to be implemented at the end of 1997, requires Australian banks to hold capital against market risk. A fundamental component of this framework is the opportunity for banks to use their value-at-risk (VaR) models as the basis of the market-risk capital charge. Value-at-risk measures the potential loss on a portfolio for a specified level of confidence if adverse movements in market prices were to occur. This paper examines the VaR measure and some of the techniques available for assessing the performance of a VaR model. The first section of the paper uses a simple portfolio of two spot foreign exchange positions to illustrate three of the approaches used in the calculation of a VaR measure: variance-covariance, historical simulation and Monte-Carlo simulation. It is concluded that, although VaR is a very useful tool, it is not without its shortcomings and so should be supplemented with other risk-management techniques. The second section of the paper focuses on the use of backtesting – the comparison of model-generated VaR numbers with actual profits and losses z– for assessing the accuracy of a VaR model. Several statistical tests are demonstrated by testing daily VaR and profit and loss data obtained from an Australian bank. The paper concludes that, although the tests are not sufficiently precise to form the basis of regulatory treatment of banks’ VaR results, the tests do provide useful diagnostic information for evaluating model performance.

Suggested Citation

  • Colleen Cassidy & Marianne Gizycki, 1997. "Measuring Traded Market Risk: Value-at-risk and Backtesting Techniques," RBA Research Discussion Papers rdp9708, Reserve Bank of Australia.
  • Handle: RePEc:rba:rbardp:rdp9708
    as

    Download full text from publisher

    File URL: https://www.rba.gov.au/publications/rdp/1997/pdf/rdp9708.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Fernando Melo Velandia & Oscar reinaldo Becerra Camargo, 2005. "Medidas de Riesgo, Características y Técnicas de Medición: Una Aplicación del VAR y el ES a la Tasa Interbancaria de Colombia," Borradores de Economia 343, Banco de la Republica de Colombia.
    2. Sabiwalsky, Ralf, 2012. "Does Basel II pillar 3 risk exposure data help to identify risky banks?," SFB 649 Discussion Papers 2012-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Don Bredin & Stuart Hyde, 2004. "FOREX Risk: Measurement and Evaluation Using Value‐at‐Risk," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(9‐10), pages 1389-1417, November.
    4. Pérignon, Christophe & Deng, Zi Yin & Wang, Zhi Jun, 2008. "Do banks overstate their Value-at-Risk?," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 783-794, May.
    5. repec:hum:wpaper:sfb649dp2012-008 is not listed on IDEAS
    6. Don Bredin & Stuart Hyde, 2004. "FOREX Risk: Measurement and Evaluation Using Value‐at‐Risk," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(9‐10), pages 1389-1417, November.
    7. Angus Campbell & Daniel R. Smith, 2022. "An empirical investigation of the quality of value‐at‐risk disclosure in Australia," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(1), pages 469-491, March.
    8. Aymen BEN REJEB & Ousama BEN SALHA & Jaleleddine BEN REJEB, 2012. "Value-at-Risk Analysis for the Tunisian Currency Market: A Comparative Study," International Journal of Economics and Financial Issues, Econjournals, vol. 2(2), pages 110-125.
    9. Sean D. Campbell, 2005. "A review of backtesting and backtesting procedures," Finance and Economics Discussion Series 2005-21, Board of Governors of the Federal Reserve System (U.S.).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    2. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    3. Juan Carlos Escanciano & Zaichao Du, 2015. "Backtesting Expected Shortfall: Accounting for Tail Risk," CAEPR Working Papers 2015-001, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    4. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    5. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    6. Jorge E. Galán & María Rodríguez Moreno, 2020. "At-risk measures and financial stability," Financial Stability Review, Banco de España, issue Autumn.
    7. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    8. Saswat Patra & Malay Bhattacharyya, 2020. "How Risky Are the Options? A Comparison with the Underlying Stock Using MaxVaR as a Risk Measure," Risks, MDPI, vol. 8(3), pages 1-17, July.
    9. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    10. Christophe Boucher & Benjamin Hamidi & Patrick Kouontchou & Bertrand Maillet, 2012. "Une évaluation économique du risque de modèle pour les investisseurs de long terme," Revue économique, Presses de Sciences-Po, vol. 63(3), pages 591-600.
    11. Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
    12. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    13. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    14. Bujar Huskaj & Marcus Nossman, 2013. "A Term Structure Model for VIX Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(5), pages 421-442, May.
    15. Chkili, Walid & Aloui, Chaker & Nguyen, Duc Khuong, 2012. "Asymmetric effects and long memory in dynamic volatility relationships between stock returns and exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 738-757.
    16. Fajardo, José & Farias, Aquiles, 2004. "Generalized Hyperbolic Distributions and Brazilian Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 24(2), November.
    17. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    18. H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022. "GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
    19. Evangelos Vasileiou, 2022. "Inaccurate Value at Risk Estimations: Bad Modeling or Inappropriate Data?," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1155-1171, March.
    20. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.

    More about this item

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rba:rbardp:rdp9708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paula Drew (email available below). General contact details of provider: https://edirc.repec.org/data/rbagvau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.