IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.06430.html
   My bibliography  Save this paper

Sentiment Correlation in Financial News Networks and Associated Market Movements

Author

Listed:
  • Xingchen Wan
  • Jie Yang
  • Slavi Marinov
  • Jan-Peter Calliess
  • Stefan Zohren
  • Xiaowen Dong

Abstract

In an increasingly connected global market, news sentiment towards one company may not only indicate its own market performance, but can also be associated with a broader movement on the sentiment and performance of other companies from the same or even different sectors. In this paper, we apply NLP techniques to understand news sentiment of 87 companies among the most reported on Reuters for a period of seven years. We investigate the propagation of such sentiment in company networks and evaluate the associated market movements in terms of stock price and volatility. Our results suggest that, in certain sectors, strong media sentiment towards one company may indicate a significant change in media sentiment towards related companies measured as neighbours in a financial network constructed from news co-occurrence. Furthermore, there exists a weak but statistically significant association between strong media sentiment and abnormal market return as well as volatility. Such an association is more significant at the level of individual companies, but nevertheless remains visible at the level of sectors or groups of companies.

Suggested Citation

  • Xingchen Wan & Jie Yang & Slavi Marinov & Jan-Peter Calliess & Stefan Zohren & Xiaowen Dong, 2020. "Sentiment Correlation in Financial News Networks and Associated Market Movements," Papers 2011.06430, arXiv.org, revised Feb 2021.
  • Handle: RePEc:arx:papers:2011.06430
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.06430
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Forss & Peter Sarlin, 2017. "News-sentiment networks as a risk indicator," Papers 1706.05812, arXiv.org, revised May 2018.
    2. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    3. Longstaff, Francis A., 2010. "The subprime credit crisis and contagion in financial markets," Journal of Financial Economics, Elsevier, vol. 97(3), pages 436-450, September.
    4. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    5. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    6. repec:pri:cepsud:186malkiel is not listed on IDEAS
    7. Heimo, Tapio & Kaski, Kimmo & Saramäki, Jari, 2009. "Maximal spanning trees, asset graphs and random matrix denoising in the analysis of dynamics of financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(2), pages 145-156.
    8. Jaume Masoliver & Josep Perello, 2006. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 423-433.
    9. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    10. Burton G. Malkiel & Atanu Saha & Alex Grecu, 2009. "The Clustering of Extreme Movements: Stock Prices and the Weather," Working Papers 1162, Princeton University, Department of Economics, Center for Economic Policy Studies..
    11. Eugene F. Fama & Kenneth R. French, 2004. "The Capital Asset Pricing Model: Theory and Evidence," Journal of Economic Perspectives, American Economic Association, vol. 18(3), pages 25-46, Summer.
    12. Burton G. Malkiel & Atanu Saha & Alex Grecu, 2009. "The Clustering of Extreme Movements: Stock Prices and the Weather," Working Papers 1162, Princeton University, Department of Economics, Center for Economic Policy Studies..
    13. Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loureiro, Maria L. & Alló, Maria & Coello, Pablo, 2022. "Hot in Twitter: Assessing the emotional impacts of wildfires with sentiment analysis," Ecological Economics, Elsevier, vol. 200(C).
    2. Andrieş, Alin Marius & Ongena, Steven & Sprincean, Nicu & Tunaru, Radu, 2022. "Risk spillovers and interconnectedness between systemically important institutions," Journal of Financial Stability, Elsevier, vol. 58(C).
    3. Shawn McCarthy & Gita Alaghband, 2023. "Enhancing Financial Market Analysis and Prediction with Emotion Corpora and News Co-Occurrence Network," JRFM, MDPI, vol. 16(4), pages 1-19, April.
    4. Edward Turner, 2021. "Graph Auto-Encoders for Financial Clustering," Papers 2111.13519, arXiv.org, revised Dec 2021.
    5. Yoontae Hwang & Stefan Zohren & Yongjae Lee, 2024. "Temporal Representation Learning for Stock Similarities and Its Applications in Investment Management," Papers 2407.13751, arXiv.org.
    6. Gianluca Anese & Marco Corazza & Michele Costola & Loriana Pelizzon, 2023. "Impact of public news sentiment on stock market index return and volatility," Computational Management Science, Springer, vol. 20(1), pages 1-36, December.
    7. Bo Yan & Mengru Liang & Yinxin Zhao, 2024. "Market sentiment and price dynamics in weak markets: A comprehensive empirical analysis of the soybean meal option market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(5), pages 744-766, May.
    8. Philipp Wirth & Francesca Medda & Thomas Schroder, 2024. "Longitudinal market structure detection using a dynamic modularity-spectral algorithm," Papers 2407.04500, arXiv.org.
    9. Rian Dolphin & Barry Smyth & Ruihai Dong, 2022. "A Multimodal Embedding-Based Approach to Industry Classification in Financial Markets," Papers 2211.06378, arXiv.org.
    10. Joshua Eklund & Jong‐Min Kim, 2024. "Forecasting Consumer Price Index with Federal Open Market Committee Sentiment Index," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1795-1813, September.
    11. Fabian Billert & Stefan Conrad, 2024. "A Framework for the Construction of a Sentiment-Driven Performance Index: The Case of DAX40," Papers 2409.20397, arXiv.org.
    12. Qinkai Chen, 2021. "Stock Movement Prediction with Financial News using Contextualized Embedding from BERT," Papers 2107.08721, arXiv.org.
    13. Costola, Michele & Hinz, Oliver & Nofer, Michael & Pelizzon, Loriana, 2023. "Machine learning sentiment analysis, COVID-19 news and stock market reactions," Research in International Business and Finance, Elsevier, vol. 64(C).
    14. Xiaohong Shen & Gaoshan Wang & Yue Wang & Alfred Peris, 2021. "The Influence of Research Reports on Stock Returns: The Mediating Effect of Machine-Learning-Based Investor Sentiment," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, December.
    15. Shangyang Mou & Qiang Xue & Xunquan Chen & Jinhui Chen & Ryoichi Takashima & Tetsuya Takiguchi & Yasuo Ariki, 2025. "Prefix tuning with prompt augmentation for efficient financial news summarization," Journal of Computational Social Science, Springer, vol. 8(1), pages 1-16, February.
    16. Dragos Gorduza & Xiaowen Dong & Stefan Zohren, 2022. "Understanding stock market instability via graph auto-encoders," Papers 2212.04974, arXiv.org.
    17. Semen Budennyy & Alexey Kazakov & Elizaveta Kovtun & Leonid Zhukov, 2022. "New drugs and stock market: how to predict pharma market reaction to clinical trial announcements," Papers 2208.07248, arXiv.org, revised Aug 2022.
    18. Kingstone Nyakurukwa & Yudhvir Seetharam, 2025. "Investor sentiment networks: mapping connectedness in DJIA stocks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-19, December.
    19. Aurthur Vimalachandran Thomas Jayachandran, 2022. "The financial crash of 2020 and the retail trader’s boon: a correlation between sentiment and technical analysis," SN Business & Economics, Springer, vol. 2(6), pages 1-8, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Kuan-Hui & Yang, Cheol-Won, 2022. "The world price of tail risk," Pacific-Basin Finance Journal, Elsevier, vol. 71(C).
    2. Cujean, Julien & Andrei, Daniel & Fournier, Mathieu, 2019. "The Low-Minus-High Portfolio and the Factor Zoo," CEPR Discussion Papers 14153, C.E.P.R. Discussion Papers.
    3. Jordan Bowes & Marcel Ausloos, 2021. "Financial Risk and Better Returns through Smart Beta Exchange-Traded Funds?," JRFM, MDPI, vol. 14(7), pages 1-30, June.
    4. Michael Curran & Adnan Velic, 2020. "The CAPM, National Stock Market Betas, and Macroeconomic Covariates: a Global Analysis," Open Economies Review, Springer, vol. 31(4), pages 787-820, September.
    5. James W. Kolari & Jianhua Z. Huang & Wei Liu & Huiling Liao, 2022. "Further Tests of the ZCAPM Asset Pricing Model," JRFM, MDPI, vol. 15(3), pages 1-23, March.
    6. Nazaire, Gregory & Pacurar, Maria & Sy, Oumar, 2021. "Factor Investing and Risk Management: Is Smart-Beta Diversification Smart?," Finance Research Letters, Elsevier, vol. 41(C).
    7. S. Ozornov, 2015. "Validity Of Fama And French Model On Rts Index," Review of Business and Economics Studies // Review of Business and Economics Studies, Финансовый Университет // Financial University, vol. 3(4), pages 22-43.
    8. Zhang, Yanyi & De Smedt, Johannes, 2024. "Index tracking using shapley additive explanations and one-dimensional pointwise convolutional autoencoders," International Review of Financial Analysis, Elsevier, vol. 95(PC).
    9. Güler ARAS & İlhan ÇAM & Bilal ZAVALSIZ & Serkan KESKİN, 2018. "Fama-French Çok Faktör Varlık Fiyatlama Modellerinin Performanslarının Karşılaştırılması: Borsa İstanbul Üzerine Bir Uygulama," Istanbul Business Research, Istanbul University Business School, vol. 47(2), pages 183-207, November.
    10. Ganggang Guo & Yulei Rao & Feida Zhu & Fang Xu, 2020. "Innovative deep matching algorithm for stock portfolio selection using deep stock profiles," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    11. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
    12. Montone, Maurizio, 2023. "Beta, value, and growth: Do dichotomous risk-preferences explain stock returns?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    13. Michael Hasler & Charles Martineau, 2023. "Explaining the Failure of the Unconditional CAPM with the Conditional CAPM," Management Science, INFORMS, vol. 69(3), pages 1835-1855, March.
    14. Kolari, James W. & Huang, Jianhua Z. & Butt, Hilal Anwar & Liao, Huiling, 2022. "International tests of the ZCAPM asset pricing model," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    15. Seung C. Ahn & Alex R. Horenstein, 2017. "Asset Pricing and Excess Returns over the Market Return," Working Papers 2017-12, University of Miami, Department of Economics.
    16. Auld, T., 2022. "Political markets as equity price factors," Cambridge Working Papers in Economics 2264, Faculty of Economics, University of Cambridge.
    17. Stanislav S Borysov & Alexander V Balatsky, 2014. "Cross-Correlation Asymmetries and Causal Relationships between Stock and Market Risk," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    18. John L. Glascock & Ran Lu-Andrews, 2018. "The Asymmetric Conditional Beta-Return Relations of REITs," The Journal of Real Estate Finance and Economics, Springer, vol. 57(2), pages 231-245, August.
    19. Reis, Pedro Nogueira & Pinto, António Pedro Soares, 2024. "Unlocking portfolio resilient and persistent risk: A holistic approach to unveiling potential grounds," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    20. Kaserer Christoph & Hanauer Matthias X., 2017. "25 Jahre Fama-French-Modell: Erklärungsgehalt, Anomalien und praktische Implikationen," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 18(2), pages 98-116, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.06430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.