IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v84y2022ics1057521922002241.html
   My bibliography  Save this article

How does news sentiment affect the states of Japanese stock return volatility?

Author

Listed:
  • Feng, Lingbing
  • Fu, Tong
  • Shi, Yanlin

Abstract

This paper examines the impact of public news sentiment on the volatility states of firm-level returns on the Japanese Stock market. We firstly adopt a novel Markov Regime Switching Long Memory GARCH (MRS-LMGARCH), which is employed to estimate the latent volatility states of intraday stock return. By using the RavenPack Dow Jones News Analytics database, we fit discrete choice models to investigate the impact of news sentiment on changes of volatility states of the constituent stocks in the TOPIX Core 30 Index. Our findings suggest that news occurrence and sentiment, especially those of macro-economic news, are a key factor that significantly drives the volatility state of Japanese stock returns. This provides essential information for traders of the Japanese stock market to optimize their trading strategies and risk management plans to combat volatility.

Suggested Citation

  • Feng, Lingbing & Fu, Tong & Shi, Yanlin, 2022. "How does news sentiment affect the states of Japanese stock return volatility?," International Review of Financial Analysis, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:finana:v:84:y:2022:i:c:s1057521922002241
    DOI: 10.1016/j.irfa.2022.102267
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521922002241
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2022.102267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
    2. Hao, Jing & He, Feng & Liu-Chen, Baiao & Li, Zihe, 2021. "Price discovery and its determinants for the Chinese soybean options and futures markets," Finance Research Letters, Elsevier, vol. 40(C).
    3. Amado, Cristina & Teräsvirta, Timo, 2014. "Modelling changes in the unconditional variance of long stock return series," Journal of Empirical Finance, Elsevier, vol. 25(C), pages 15-35.
    4. Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
    5. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2017. "Does news matter in China’s foreign exchange market? Chinese RMB volatility and public information arrivals," International Review of Economics & Finance, Elsevier, vol. 52(C), pages 302-321.
    6. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    7. Feng He & Baiao Liu-Chen & Xiangtong Meng & Xiong Xiong & Wei Zhang, 2020. "Price discovery and spillover dynamics in the Chinese stock index futures market: a natural experiment on trading volume restriction," Quantitative Finance, Taylor & Francis Journals, vol. 20(12), pages 2067-2083, December.
    8. Shi, Yanlin & Ho, Kin-Yip & Liu, Wai-Man, 2016. "Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 291-312.
    9. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    10. David Ardia, 2009. "Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 105-126, March.
    11. Susmel, Raul & Engle, Robert F., 1994. "Hourly volatility spillovers between international equity markets," Journal of International Money and Finance, Elsevier, vol. 13(1), pages 3-25, February.
    12. Shi, Yanlin & Ho, Kin-Yip, 2021. "News sentiment and states of stock return volatility: Evidence from long memory and discrete choice models," Finance Research Letters, Elsevier, vol. 38(C).
    13. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    14. Menelaos Karanasos & Zacharias Psaradakis & Martin Sola, 2004. "On the Autocorrelation Properties of Long‐Memory GARCH Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 265-282, March.
    15. Hautsch, Nikolaus & Hess, Dieter & Veredas, David, 2011. "The impact of macroeconomic news on quote adjustments, noise, and informational volatility," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2733-2746, October.
    16. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    17. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    18. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
    19. Mitchell, Mark L & Mulherin, J Harold, 1994. "The Impact of Public Information on the Stock Market," Journal of Finance, American Finance Association, vol. 49(3), pages 923-950, July.
    20. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    21. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    22. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
    23. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
    24. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus, 2000. "Stationary Arch Models: Dependence Structure And Central Limit Theorem," Econometric Theory, Cambridge University Press, vol. 16(1), pages 3-22, February.
    25. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    26. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 493-530.
    27. Riordan, Ryan & Storkenmaier, Andreas & Wagener, Martin & Sarah Zhang, S., 2013. "Public information arrival: Price discovery and liquidity in electronic limit order markets," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1148-1159.
    28. Brenner, Menachem & Pasquariello, Paolo & Subrahmanyam, Marti, 2009. "On the Volatility and Comovement of U.S. Financial Markets around Macroeconomic News Announcements," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(6), pages 1265-1289, December.
    29. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
    30. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    31. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2020. "News and return volatility of Chinese bank stocks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 1095-1105.
    32. Du, Hanyu & Hao, Jing & He, Feng & Xi, Wenze, 2022. "Media sentiment and cross-sectional stock returns in the Chinese stock market," Research in International Business and Finance, Elsevier, vol. 60(C).
    33. Veronesi, Pietro, 1999. "Stock Market Overreaction to Bad News in Good Times: A Rational Expectations Equilibrium Model," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 975-1007.
    34. Shi, Yanlin & Liu, Wai-Man & Ho, Kin-Yip, 2016. "Public news arrival and the idiosyncratic volatility puzzle," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 159-172.
    35. Copeland, Thomas E, 1976. "A Model of Asset Trading under the Assumption of Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 31(4), pages 1149-1168, September.
    36. Shi, Yanlin & Ho, Kin-Yip, 2015. "Modeling high-frequency volatility with three-state FIGARCH models," Economic Modelling, Elsevier, vol. 51(C), pages 473-483.
    37. Kalev, Petko S. & Liu, Wai-Man & Pham, Peter K. & Jarnecic, Elvis, 2004. "Public information arrival and volatility of intraday stock returns," Journal of Banking & Finance, Elsevier, vol. 28(6), pages 1441-1467, June.
    38. Paul C. Tetlock, 2010. "Does Public Financial News Resolve Asymmetric Information?," The Review of Financial Studies, Society for Financial Studies, vol. 23(9), pages 3520-3557.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yu & Lu, Shanglin & Wei, Ran & Wang, Shixuan, 2024. "Local media sentiment towards pollution and its effect on corporate green innovation," International Review of Financial Analysis, Elsevier, vol. 94(C).
    2. Abdollahi, Hooman & Fjesme, Sturla L. & Sirnes, Espen, 2024. "Measuring market volatility connectedness to media sentiment," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    3. Gianluca Anese & Marco Corazza & Michele Costola & Loriana Pelizzon, 2023. "Impact of public news sentiment on stock market index return and volatility," Computational Management Science, Springer, vol. 20(1), pages 1-36, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
    2. Gao, Guangyuan & Ho, Kin-Yip & Shi, Yanlin, 2020. "Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    3. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.
    4. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
    5. Yanlin Shi & Lingbing Feng & Tong Fu, 2020. "Markov Regime-Switching in-Mean Model with Tempered Stable Distribution," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1275-1299, April.
    6. Shi, Yanlin & Ho, Kin-Yip, 2015. "Modeling high-frequency volatility with three-state FIGARCH models," Economic Modelling, Elsevier, vol. 51(C), pages 473-483.
    7. Shi, Yanlin & Ho, Kin-Yip & Liu, Wai-Man, 2016. "Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 291-312.
    8. Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
    9. Feng Lingbing & Shi Yanlin, 2020. "Markov regime-switching autoregressive model with tempered stable distribution: simulation evidence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(1), pages 1-27, February.
    10. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Junru Zhang & Hadrian Geri Djajadikerta & Zhaoyong Zhang, 2018. "Does Sustainability Engagement Affect Stock Return Volatility? Evidence from the Chinese Financial Market," Sustainability, MDPI, vol. 10(10), pages 1-21, September.
    12. Zhang, Junru & Zhang, Zhaoyong, 2021. "CSR, Media and Stock Illiquidity: Evidence from Chinese Listed Financial Firms," Finance Research Letters, Elsevier, vol. 41(C).
    13. Kao, Yu-Sheng & Day, Min-Yuh & Chou, Ke-Hsin, 2024. "A comparison of bitcoin futures return and return volatility based on news sentiment contemporaneously or lead-lag," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    14. Shi, Yanlin & Ho, Kin-Yip, 2021. "News sentiment and states of stock return volatility: Evidence from long memory and discrete choice models," Finance Research Letters, Elsevier, vol. 38(C).
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    16. Zhou, Xinmiao & Zhang, Junru & Zhang, Zhaoyong, 2021. "How does news flow affect cross-market volatility spillovers? Evidence from China’s stock index futures and spot markets," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 196-213.
    17. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    18. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    19. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2020. "News and return volatility of Chinese bank stocks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 1095-1105.
    20. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:84:y:2022:i:c:s1057521922002241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.