IDEAS home Printed from https://ideas.repec.org/p/zbw/fubsbe/201612.html
   My bibliography  Save this paper

A unit-level quantile nested error regression model for domain prediction with continuous and discrete outcomes

Author

Listed:
  • Weidenhammer, Beate
  • Schmid, Timo
  • Salvati, Nicola
  • Tzavidis, Nikos

Abstract

In this paper we will present recent work on a new unit-level small area methodology that can be used with continuous and discrete outcomes. The proposed method is based on constructing a model-based estimator of the distribution function by using a nested-error regression model for the quantiles of the target outcome. A general set of domain-specific parameters that extends beyond averages is then estimated by sampling from the estimated distribution function. For fitting the model we exploit the link between the Asymmetric Laplace Distribution and maximum likelihood estimation for quantile regression. The specification of the distribution of the random effects is considered in some detail by exploring the use of parametric and non-parametric alternatives. The use of the proposed methodology with discrete (count) outcomes requires appropriate transformations, in particular jittering. For the case of discrete outcomes the methodology relaxes the restrictive assumptions of the Poisson generalised linear mixed model and allows for what is potentially a more flexible mean-variance relationship. Mean Squared Error estimation is discussed. Extensive model-based simulations are used for comparing the proposed methodology to alternative unit-level methodologies for estimating a broad range of complex parameters.

Suggested Citation

  • Weidenhammer, Beate & Schmid, Timo & Salvati, Nicola & Tzavidis, Nikos, 2016. "A unit-level quantile nested error regression model for domain prediction with continuous and discrete outcomes," Discussion Papers 2016/12, Free University Berlin, School of Business & Economics.
  • Handle: RePEc:zbw:fubsbe:201612
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/142687/1/862689864.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    2. James R. Carpenter & Harvey Goldstein & Jon Rasbash, 2003. "A novel bootstrap procedure for assessing the relationship between class size and achievement," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 431-443, October.
    3. Machado, Jose A.F. & Silva, J. M. C. Santos, 2005. "Quantiles for Counts," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1226-1237, December.
    4. Xingdong Feng & Xuming He & Jianhua Hu, 2011. "Wild bootstrap for quantile regression," Biometrika, Biometrika Trust, vol. 98(4), pages 995-999.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
    2. Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.
    3. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    4. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    5. Victor Chernozhukov & Iván Fernández-Val & Blaise Melly & Kaspar Wüthrich, 2020. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 123-137, January.
    6. Paul Contoyannis & Jinhu Li, 2017. "The dynamics of adolescent depression: an instrumental variable quantile regression with fixed effects approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 907-922, June.
    7. Verner, Dorte, 2008. "Making poor Haitians count--poverty in rural and urban Haiti based on the first household survey for Haiti," Policy Research Working Paper Series 4571, The World Bank.
    8. Henry R. Scharf & Xinyi Lu & Perry J. Williams & Mevin B. Hooten, 2022. "Constructing Flexible, Identifiable and Interpretable Statistical Models for Binary Data," International Statistical Review, International Statistical Institute, vol. 90(2), pages 328-345, August.
    9. Christophe Muller & Sami Bibi, 2010. "Refining Targeting against Poverty Evidence from Tunisia," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(3), pages 381-410, June.
    10. Cho, Jin Seo & Kim, Tae-hwan & Shin, Yongcheol, 2015. "Quantile cointegration in the autoregressive distributed-lag modeling framework," Journal of Econometrics, Elsevier, vol. 188(1), pages 281-300.
    11. Luke B. Smith & Brian J. Reich & Amy H. Herring & Peter H. Langlois & Montserrat Fuentes, 2015. "Multilevel quantile function modeling with application to birth outcomes," Biometrics, The International Biometric Society, vol. 71(2), pages 508-519, June.
    12. Holger Dette & Matthias Guhlich & Natalie Neumeyer, 2015. "Testing for additivity in nonparametric quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 437-477, June.
    13. Giovanni Dosi & Dario Guarascio & Andrea Ricci & Maria Enrica Virgillito, 2021. "Neodualism in the Italian business firms: training, organizational capabilities, and productivity distributions," Small Business Economics, Springer, vol. 57(1), pages 167-189, June.
    14. Alguacil, Maite & Martí, Josep & Orts, Vicente, 2017. "Firm heterogeneity and the market scope of European multinational activity," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 645-659.
    15. Nakagawa, Kei & Sakemoto, Ryuta, 2022. "Market uncertainty and correlation between Bitcoin and Ether," Finance Research Letters, Elsevier, vol. 50(C).
    16. Xuejun Jiang & Yunxian Li & Aijun Yang & Ruowei Zhou, 2020. "Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk," Empirical Economics, Springer, vol. 58(5), pages 2085-2103, May.
    17. Christophe Muller & Sami Bibi, 2006. "Focused Targeting against Poverty Evidence from Tunisia," IDEP Working Papers 0602, Institut d'economie publique (IDEP), Marseille, France, revised Apr 2006.
    18. Fuzi, Mohd Fadzli Mohd & Jemain, Abdul Aziz & Ismail, Noriszura, 2016. "Bayesian quantile regression model for claim count data," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 124-137.
    19. Rojas-Perilla, Natalia & Pannier, Sören & Schmid, Timo & Tzavidis, Nikos, 2017. "Data-driven transformations in small area estimation," Discussion Papers 2017/30, Free University Berlin, School of Business & Economics.
    20. Moreira S & Pita Barros P, 2009. "Double coverage and demand for health care: Evidence from quantile regression," Health, Econometrics and Data Group (HEDG) Working Papers 09/21, HEDG, c/o Department of Economics, University of York.

    More about this item

    Keywords

    Asymmetric Laplace Distribution; generalized linear mixed model; jittering; non-parametric; estimation; small area estimation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fubsbe:201612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwfubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.