IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v88y2015icp128-138.html
   My bibliography  Save this article

A lack-of-fit test for quantile regression models with high-dimensional covariates

Author

Listed:
  • Conde-Amboage, Mercedes
  • Sánchez-Sellero, César
  • González-Manteiga, Wenceslao

Abstract

A new lack-of-fit test for quantile regression models, that is suitable even with high-dimensional covariates, is proposed. The test is based on the cumulative sum of residuals with respect to unidimensional linear projections of the covariates. To approximate the critical values of the test, a wild bootstrap mechanism convenient for quantile regression is used. An extensive simulation study was undertaken that shows the good performance of the new test, particularly when the dimension of the covariate is high. The test can also be applied and performs well under heteroscedastic regression models. The test is illustrated with real data about the economic growth of 161 countries.

Suggested Citation

  • Conde-Amboage, Mercedes & Sánchez-Sellero, César & González-Manteiga, Wenceslao, 2015. "A lack-of-fit test for quantile regression models with high-dimensional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 128-138.
  • Handle: RePEc:eee:csdana:v:88:y:2015:i:c:p:128-138
    DOI: 10.1016/j.csda.2015.02.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315000572
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.02.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. anonymous, 1995. "Does the bouncing ball lead to economic growth?," Regional Update, Federal Reserve Bank of Atlanta, issue Jul, pages 1-2,4-6.
    2. Noh, Hohsuk & El Ghouch, Anouar & Van Keilegom, Ingrid, 2013. "Assessing model adequacy in possibly misspecified quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 558-569.
    3. Escanciano, J. Carlos, 2006. "A Consistent Diagnostic Test For Regression Models Using Projections," Econometric Theory, Cambridge University Press, vol. 22(6), pages 1030-1051, December.
    4. Robert J. Barro, 2013. "Inflation and Economic Growth," Annals of Economics and Finance, Society for AEF, vol. 14(1), pages 121-144, May.
    5. Escanciano, J.C. & Goh, S.C., 2014. "Specification analysis of linear quantile models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 495-507.
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    7. Hurvich, Clifford M. & Tsai, Chih-Ling, 1990. "Model selection for least absolute deviations regression in small samples," Statistics & Probability Letters, Elsevier, vol. 9(3), pages 259-265, March.
    8. Escanciano, Juan Carlos & Velasco, Carlos, 2010. "Specification tests of parametric dynamic conditional quantiles," Journal of Econometrics, Elsevier, vol. 159(1), pages 209-221, November.
    9. Whang, Yoon-Jae, 2006. "Smoothed Empirical Likelihood Methods For Quantile Regression Models," Econometric Theory, Cambridge University Press, vol. 22(2), pages 173-205, April.
    10. Xavier Sala-I-Martin, 1997. "Transfers, Social Safety Nets, and Economic Growth," IMF Staff Papers, Palgrave Macmillan, vol. 44(1), pages 81-102, March.
    11. Zheng, John Xu, 1998. "A Consistent Nonparametric Test Of Parametric Regression Models Under Conditional Quantile Restrictions," Econometric Theory, Cambridge University Press, vol. 14(1), pages 123-138, February.
    12. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    13. Xingdong Feng & Xuming He & Jianhua Hu, 2011. "Wild bootstrap for quantile regression," Biometrika, Biometrika Trust, vol. 98(4), pages 995-999.
    14. John Xu Zheng, 1996. "A consistent test of functional form via nonparametric estimation techniques," Journal of Econometrics, Elsevier, vol. 75(2), pages 263-289, December.
    15. W. Stute & W. L. Xu & L. X. Zhu, 2008. "Model diagnosis for parametric regression in high-dimensional spaces," Biometrika, Biometrika Trust, vol. 95(2), pages 451-467.
    16. Lavergne, Pascal & Patilea, Valentin, 2008. "Breaking the curse of dimensionality in nonparametric testing," Journal of Econometrics, Elsevier, vol. 143(1), pages 103-122, March.
    17. Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.
    18. Noh, Hohsuk & El Ghouch, Anouar & Van Keilegom, Ingrid, 2013. "Assessing model adequacy in possibly misspecified quantile regression," LIDAM Reprints ISBA 2013001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. He X. & Zhu L-X., 2003. "A Lack-of-Fit Test for Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1013-1022, January.
    20. repec:hal:journl:peer-00732534 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Pérez-González & Tomás R. Cotos-Yáñez & Wenceslao González-Manteiga & Rosa M. Crujeiras-Casais, 2021. "Goodness-of-fit tests for quantile regression with missing responses," Statistical Papers, Springer, vol. 62(3), pages 1231-1264, June.
    2. Xu, Kai & Zhou, Yeqing, 2021. "Projection-averaging-based cumulative covariance and its use in goodness-of-fit testing for single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    3. Liu, Jicai & Si, Yuefeng & Niu, Yong & Zhang, Riquan, 2022. "Projection quantile correlation and its use in high-dimensional grouped variable screening," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Pérez-González & Tomás R. Cotos-Yáñez & Wenceslao González-Manteiga & Rosa M. Crujeiras-Casais, 2021. "Goodness-of-fit tests for quantile regression with missing responses," Statistical Papers, Springer, vol. 62(3), pages 1231-1264, June.
    2. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    3. Escanciano, J.C. & Goh, S.C., 2014. "Specification analysis of linear quantile models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 495-507.
    4. Antonio Galvao & Kengo Kato & Gabriel Montes-Rojas & Jose Olmo, 2014. "Testing linearity against threshold effects: uniform inference in quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 413-439, April.
    5. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    6. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    7. Tu, Yundong & Liang, Han-Ying & Wang, Qiying, 2022. "Nonparametric inference for quantile cointegrations with stationary covariates," Journal of Econometrics, Elsevier, vol. 230(2), pages 453-482.
    8. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    9. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    10. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    11. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    12. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
    13. Tang, Cheng Yong & Leng, Chenlei, 2012. "An empirical likelihood approach to quantile regression with auxiliary information," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 29-36.
    14. Holger Dette & Matthias Guhlich & Natalie Neumeyer, 2015. "Testing for additivity in nonparametric quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 437-477, June.
    15. Kottaridi, Constantina & Stengos, Thanasis, 2010. "Foreign direct investment, human capital and non-linearities in economic growth," Journal of Macroeconomics, Elsevier, vol. 32(3), pages 858-871, September.
    16. Cuizhen Niu & Lixing Zhu, 2018. "A robust adaptive-to-model enhancement test for parametric single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1013-1045, October.
    17. Escanciano, Juan Carlos & Velasco, Carlos, 2010. "Specification tests of parametric dynamic conditional quantiles," Journal of Econometrics, Elsevier, vol. 159(1), pages 209-221, November.
    18. Li, Lingzhu & Chiu, Sung Nok & Zhu, Lixing, 2019. "Model checking for regressions: An approach bridging between local smoothing and global smoothing methods," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 64-82.
    19. Junmin Liu & Deli Zhu & Luoyao Yu & Xuehu Zhu, 2023. "Specification testing of partially linear single-index models: a groupwise dimension reduction-based adaptive-to-model approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 232-262, March.
    20. He, Xuming & Pan, Xiaoou & Tan, Kean Ming & Zhou, Wen-Xin, 2023. "Smoothed quantile regression with large-scale inference," Journal of Econometrics, Elsevier, vol. 232(2), pages 367-388.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:88:y:2015:i:c:p:128-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.