IDEAS home Printed from https://ideas.repec.org/p/vua/wpaper/1997-23.html
   My bibliography  Save this paper

Changing interactions on markets for competing commodities: the case of natural and synthetic rubber prices

Author

Listed:
  • Smit, H. P.

    (Vrije Universiteit Amsterdam, Faculteit der Economische Wetenschappen en Econometrie (Free University Amsterdam, Faculty of Economics Sciences, Business Administration and Economitrics)

  • Vogelvang, E

Abstract

Prices on commodity markets are often correlated because they react to similar cycles in the economy. This is especially true for commodities which are inputs into the same products. And even more so for commodities which are considered here as partial substitutes. Prices of such commodities are considered to be highly correlated. This paper investigates the leads and lags in prices for natural rubber (NR) and synthetic rubber (SR). It concludes that prices of NR lead prices of SR by about three to six months, depending on the country concerned. This influence is, however, changing over time, as can be estimated when using the Kalman filter approach for a model with time-varying parameters. The relationships are reducing in significance over time: both positive and negative coefficients tend to zero, implying that both markets are increasingly separated. The influence of demand on the other hand remains quite stable. A notable exception is the EU. The two markets, NR and SR, are increasingly insulated and the consumption side continues to play a steady and significant role.

Suggested Citation

  • Smit, H. P. & Vogelvang, E, 1997. "Changing interactions on markets for competing commodities: the case of natural and synthetic rubber prices," Serie Research Memoranda 0023, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
  • Handle: RePEc:vua:wpaper:1997-23
    as

    Download full text from publisher

    File URL: http://degree.ubvu.vu.nl/repec/vua/wpaper/pdf/19970023.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, October.
    2. Merkies, Arnold H. Q. M. & Steyn, Ivo J., 1994. "Modelling changing lag patterns in Dutch construction," Journal of Economic Dynamics and Control, Elsevier, vol. 18(2), pages 499-509, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. David Bolder & Shudan Liu, 2007. "Examining Simple Joint Macroeconomic and Term-Structure Models: A Practitioner's Perspective," Staff Working Papers 07-49, Bank of Canada.
    3. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    4. Moshe Buchinsky & Phillip Leslie, 2010. "Educational Attainment and the Changing U.S. Wage Structure: Dynamic Implications on Young Individuals' Choices," Journal of Labor Economics, University of Chicago Press, vol. 28(3), pages 541-594, July.
    5. Ippei Fujiwara & Koji Takahashi, 2012. "Asian Financial Linkage: Macro‐Finance Dissonance," Pacific Economic Review, Wiley Blackwell, vol. 17(1), pages 136-159, February.
    6. Obryan Poyser, 2017. "Exploring the determinants of Bitcoin's price: an application of Bayesian Structural Time Series," Papers 1706.01437, arXiv.org.
    7. Škare, Marinko & Mošnja-Škare, Lorena, 2019. "Economic policy implications of the Gibson Law in the Netherlands (1800–2012)," Journal of Policy Modeling, Elsevier, vol. 41(5), pages 926-942.
    8. Rob Luginbuhl, 2020. "Estimation of the Financial Cycle with a Rank-Reduced Multivariate State-Space Model," CPB Discussion Paper 409, CPB Netherlands Bureau for Economic Policy Analysis.
    9. Kulaksizoglu, Tamer, 2004. "Measuring the Effectiveness of Competition Policy: Evidence from the Turkish Cement Industry," MPRA Paper 357, University Library of Munich, Germany.
    10. Lumengo Bonga‐bonga, 2009. "The South African Aggregate Production Function: Estimation Of The Constant Elasticity Of Substitution Function," South African Journal of Economics, Economic Society of South Africa, vol. 77(2), pages 332-349, June.
    11. Dewachter, Hans & Iania, Leonardo, 2011. "An Extended Macro-Finance Model with Financial Factors," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(6), pages 1893-1916, December.
    12. Martha Misas & Enrique López, 1999. "El producto potencial en Colombia: una estimación bajo var estructural," Coyuntura Económica, Fedesarrollo, September.
    13. Philipp Heimberger & Jakob Kapeller, 2017. "The performativity of potential output: pro-cyclicality and path dependency in coordinating European fiscal policies," Review of International Political Economy, Taylor & Francis Journals, vol. 24(5), pages 904-928, September.
    14. Ying Shu & Chengfu Ding & Lingbing Tao & Chentao Hu & Zhixin Tie, 2023. "Air Pollution Prediction Based on Discrete Wavelets and Deep Learning," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    15. Schlosser, William E., 2020. "Real price appreciation forecast tool: Two delivered log market price cycles in the Puget Sound markets of western Washington, USA, from 1992 through 2019," Forest Policy and Economics, Elsevier, vol. 113(C).
    16. Azumah Karim & Ananda Omotukoh Kube & Bashiru Imoro Ibn Saeed, 2020. "Modeling of Monthly Meteorological Time Series," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 9(4), pages 1-8.
    17. J. M. Binner & R. K. Bissoondeeal & A. W. Mullineux, 2005. "A composite leading indicator of the inflation cycle for the Euro area," Applied Economics, Taylor & Francis Journals, vol. 37(11), pages 1257-1266.
    18. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    19. Krist'of N'emeth & D'aniel Hadh'azi, 2024. "Generating density nowcasts for U.S. GDP growth with deep learning: Bayes by Backprop and Monte Carlo dropout," Papers 2405.15579, arXiv.org.
    20. Maurizio Luisi & Jeffery D. Amato, 2006. "Macro factors in the term structure of credit spreads," BIS Working Papers 203, Bank for International Settlements.

    More about this item

    JEL classification:

    • L11 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Production, Pricing, and Market Structure; Size Distribution of Firms

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vua:wpaper:1997-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: R. Dam (email available below). General contact details of provider: https://edirc.repec.org/data/fewvunl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.