IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v113y2020ics1389934119303624.html
   My bibliography  Save this article

Real price appreciation forecast tool: Two delivered log market price cycles in the Puget Sound markets of western Washington, USA, from 1992 through 2019

Author

Listed:
  • Schlosser, William E.

Abstract

Delivered log prices represent stochastic values exchanged in competitive marketplaces, responsive to unfolding macroeconomic forces operating through shifts in supply and demand. Major market disruption events, experienced as price appreciation or devaluation, shape into predictable cycles to balance at market price equilibrium.

Suggested Citation

  • Schlosser, William E., 2020. "Real price appreciation forecast tool: Two delivered log market price cycles in the Puget Sound markets of western Washington, USA, from 1992 through 2019," Forest Policy and Economics, Elsevier, vol. 113(C).
  • Handle: RePEc:eee:forpol:v:113:y:2020:i:c:s1389934119303624
    DOI: 10.1016/j.forpol.2020.102114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934119303624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2020.102114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephanie Rosenkranz & Patrick W. Schmitz, 2007. "Reserve Prices in Auctions as Reference Points," Economic Journal, Royal Economic Society, vol. 117(520), pages 637-653, April.
    2. Guidolin, Massimo & Ono, Sadayuki, 2006. "Are the dynamic linkages between the macroeconomy and asset prices time-varying?," Journal of Economics and Business, Elsevier, vol. 58(5-6), pages 480-518.
    3. Lane, Tom, 2017. "How does happiness relate to economic behaviour? A review of the literature," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 68(C), pages 62-78.
    4. Imre Kondor & István Csabai & Gábor Papp & Enys Mones & Gábor Czimbalmos & Máté Sándor, 2014. "Strong random correlations in networks of heterogeneous agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 9(2), pages 203-232, October.
    5. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, January.
    6. S. Manzan, 2004. "Nonlinear Mean Reversion in Stock Prices," Computing in Economics and Finance 2004 264, Society for Computational Economics.
    7. Moosa, Imad & Burns, Kelly, 2014. "The unbeatable random walk in exchange rate forecasting: Reality or myth?," Journal of Macroeconomics, Elsevier, vol. 40(C), pages 69-81.
    8. J. R. Hicks, 1963. "The Theory of Wages," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-349-00189-7.
    9. Zellner, A., 1992. "Statistics, Science and Public Policy," Papers 92-21, California Irvine - School of Social Sciences.
    10. Richard Heaney, 2006. "An empirical analysis of commodity pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(4), pages 391-415, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reimer, Jeffrey J., 2021. "An investigation of log prices in the U.S. Pacific Northwest," Forest Policy and Economics, Elsevier, vol. 126(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasir Riaz & Choudhry T. Shehzad & Zaghum Umar, 2021. "The sovereign yield curve and credit ratings in GIIPS," International Review of Finance, International Review of Finance Ltd., vol. 21(3), pages 895-916, September.
    2. Alptekin, Aynur & Broadstock, David C. & Chen, Xiaoqi & Wang, Dong, 2019. "Time-varying parameter energy demand functions: Benchmarking state-space methods against rolling-regressions," Energy Economics, Elsevier, vol. 82(C), pages 26-41.
    3. Yifeng Yan & Ju'e Guo, 2015. "The Sovereign Yield Curve and the Macroeconomy in China," Pacific Economic Review, Wiley Blackwell, vol. 20(3), pages 415-441, August.
    4. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    5. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.
    6. Shunda, Nicholas, 2009. "Auctions with a buy price: The case of reference-dependent preferences," Games and Economic Behavior, Elsevier, vol. 67(2), pages 645-664, November.
    7. David Bolder & Shudan Liu, 2007. "Examining Simple Joint Macroeconomic and Term-Structure Models: A Practitioner's Perspective," Staff Working Papers 07-49, Bank of Canada.
    8. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    9. van Hoorn, André, 2018. "Is the happiness approach to measuring preferences valid?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 73(C), pages 53-65.
    10. Detlefsen, Kai & Härdle, Wolfgang Karl, 2006. "Forecasting the term structure of variance swaps," SFB 649 Discussion Papers 2006-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Kartono, Agus & Solekha, Siti & Sumaryada, Tony & Irmansyah,, 2021. "Foreign currency exchange rate prediction using non-linear Schrödinger equations with economic fundamental parameters," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Salisu, Afees A. & Adekunle, Wasiu & Alimi, Wasiu A. & Emmanuel, Zachariah, 2019. "Predicting exchange rate with commodity prices: New evidence from Westerlund and Narayan (2015) estimator with structural breaks and asymmetries," Resources Policy, Elsevier, vol. 62(C), pages 33-56.
    13. Benoît Lyrette & Paul-Martel Roy, 1992. "Le régime des décrets favorise-t-il la paix industrielle? L'expérience des activités manufacturières québécoises, 1980-1988," Canadian Public Policy, University of Toronto Press, vol. 18(3), pages 261-274, September.
    14. Clements, Kenneth W. & Fry, Renée, 2008. "Commodity currencies and currency commodities," Resources Policy, Elsevier, vol. 33(2), pages 55-73, June.
    15. Faust, Jon & Gupta, Abhishek, 2010. "Posterior Predictive Analysis for Evaluating DSGE Models," MPRA Paper 26721, University Library of Munich, Germany.
    16. Ryuzo Sato & Tamaki Morita, 2009. "Quantity Or Quality: The Impact Of Labour Saving Innovation On Us And Japanese Growth Rates, 1960–2004," The Japanese Economic Review, Japanese Economic Association, vol. 60(4), pages 407-434, December.
    17. Bowsher, Clive G. & Meeks, Roland, 2008. "The Dynamics of Economic Functions: Modeling and Forecasting the Yield Curve," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1419-1437.
    18. Rutger-Jan Lange & Coen N. Teulings, 2021. "The option value of vacant land: Don't build when demand for housing is booming," Tinbergen Institute Discussion Papers 21-022/IV, Tinbergen Institute.
    19. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    20. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Paper Series 142752, University of Massachusetts, Amherst, Department of Resource Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:113:y:2020:i:c:s1389934119303624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.