IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/293.html
   My bibliography  Save this paper

Credit Derivative Pricing with Stochastic Volatility Models

Author

Abstract

This paper proposes a framework for pricing credit derivatives within the defaultable Markovian HJM framework featuring unspanned stochastic volatility. Motivated by empirical evidence, hump-shaped level dependent stochastic volatility specifications are proposed, such that the model admits finite dimensional Markovian structures. The model also accommodates a correlation structure between the stochastic volatility, default-free interest rates and credit spreads. Default free and defaultable bonds are explicitly priced and an approach for pricing credit default swaps and swaptions is presented where the credit swap rates can be approximated by defaultable bond prices with varying maturities. A sensitivity analysis capturing the impact of the model parameters including correlations and stochastic volatility, on the credit swap rate and the value of the credit swaption is also presented.

Suggested Citation

  • Carl Chiarella & Samuel Chege Maina & Christina Nikitopoulos-Sklibosios, 2011. "Credit Derivative Pricing with Stochastic Volatility Models," Research Paper Series 293, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:293
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-03/QFR-rp293.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chiarella, Carl & Fanelli, Viviana & Musti, Silvana, 2011. "Modelling the evolution of credit spreads using the Cox process within the HJM framework: A CDS option pricing model," European Journal of Operational Research, Elsevier, vol. 208(2), pages 95-108, January.
    2. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239, April.
    3. Marek Rutkowski & Anthony Armstrong, 2009. "Valuation Of Credit Default Swaptions And Credit Default Index Swaptions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(07), pages 1027-1053.
    4. Carl Chiarella & Oh-Kang Kwon, 2000. "A Class of Heath-Jarrow-Morton Term Structure Models with Stochastic Volatility," Research Paper Series 34, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    6. Carl Chiarella & Samuel Chege Maina & Christina Nikitopoulos-Sklibosios, 2010. "Markovian Defaultable HJM Term Structure Models with Unspanned Stochastic Volatility," Research Paper Series 283, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    8. Pierre Collin‐Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, August.
    9. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    10. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    11. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    12. Carl Chiarella & Christina Nikitopoulos Sklibosios & Erik Schlögl, 2007. "A Markovian Defaultable Term Structure Model With State Dependent Volatilities," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 155-202.
    13. Carl Chiarella & Samuel Chege Maina & Christina Nikitopoulos Sklibosios, 2013. "Credit Derivatives Pricing With Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-28.
    14. Philipp J. Schonbucher, 1997. "Team Structure Modelling of Defaultable Bonds," FMG Discussion Papers dp272, Financial Markets Group.
    15. Haitao Li & Feng Zhao, 2006. "Unspanned Stochastic Volatility: Evidence from Hedging Interest Rate Derivatives," Journal of Finance, American Finance Association, vol. 61(1), pages 341-378, February.
    16. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    17. Casassus, Jaime & Collin-Dufresne, Pierre & Goldstein, Bob, 2005. "Unspanned stochastic volatility and fixed income derivatives pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2723-2749, November.
    18. Robert A. Jarrow & Fan Yu, 2008. "Counterparty Risk and the Pricing of Defaultable Securities," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515, World Scientific Publishing Co. Pte. Ltd..
    19. Mercurio, F. & Moraleda, J. M., 2000. "An analytically tractable interest rate model with humped volatility," European Journal of Operational Research, Elsevier, vol. 120(1), pages 205-214, January.
    20. Carl Chiarella & Oh Kwon, 2003. "Finite Dimensional Affine Realisations of HJM Models in Terms of Forward Rates and Yields," Review of Derivatives Research, Springer, vol. 6(2), pages 129-155, May.
    21. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    22. Li Chen & Damir Filipovic, 2003. "Credit Derivatives in an Affine Framework," Finance 0307002, University Library of Munich, Germany.
    23. Mascia Bedendo & Lara Cathcart & Lina El‐Jahel, 2007. "The Slope Of The Term Structure Of Credit Spreads: An Empirical Investigation," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 30(2), pages 237-257, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carl Chiarella & Samuel Chege Maina & Christina Nikitopoulos Sklibosios, 2013. "Credit Derivatives Pricing With Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-28.
    2. Fanelli, Viviana, 2016. "A defaultable HJM modelling of the Libor rate for pricing Basis Swaps after the credit crunch," European Journal of Operational Research, Elsevier, vol. 249(1), pages 238-244.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    2. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    3. Carl Chiarella & Samuel Chege Maina & Christina Nikitopoulos-Sklibosios, 2010. "Markovian Defaultable HJM Term Structure Models with Unspanned Stochastic Volatility," Research Paper Series 283, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    5. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    6. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Carl Chiarella & Boda Kang & Christina Sklibosios Nikitopoulos & Thuy‐Duong Tô, 2016. "The Return–Volatility Relation in Commodity Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(2), pages 127-152, February.
    9. Kwai S. Leung & Hon Y. Ng & Hoi Y. Wong, 2014. "Stochastic Skew in the Interest Rate Cap Market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(12), pages 1146-1169, December.
    10. Cortazar, Gonzalo & Lopez, Matias & Naranjo, Lorenzo, 2017. "A multifactor stochastic volatility model of commodity prices," Energy Economics, Elsevier, vol. 67(C), pages 182-201.
    11. Markellos, Raphael N. & Psychoyios, Dimitris, 2018. "Interest rate volatility and risk management: Evidence from CBOE Treasury options," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 190-202.
    12. Anders B. Trolle & Eduardo S. Schwartz, 2006. "A General Stochastic Volatility Model for the Pricing and Forecasting of Interest Rate Derivatives," NBER Working Papers 12337, National Bureau of Economic Research, Inc.
    13. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    14. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    15. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    16. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    17. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    18. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    19. Almeida, Caio & Vicente, José, 2009. "Identifying volatility risk premia from fixed income Asian options," Journal of Banking & Finance, Elsevier, vol. 33(4), pages 652-661, April.
    20. Scott Joslin, 2018. "Can Unspanned Stochastic Volatility Models Explain the Cross Section of Bond Volatilities?," Management Science, INFORMS, vol. 64(4), pages 1707-1726, April.

    More about this item

    Keywords

    stochastic volatility; Heath-Jarrow-Morton framework; defaultable bond prices; credit spreads; CDS rates;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.