IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v34y2014i12p1146-1169.html
   My bibliography  Save this article

Stochastic Skew in the Interest Rate Cap Market

Author

Listed:
  • Kwai S. Leung
  • Hon Y. Ng
  • Hoi Y. Wong

Abstract

The term structure of interest rates cannot be used to fully explain and hedge the prices of interest rate derivatives. Unspanned stochastic volatility improves the accuracy of interest rate derivatives valuation but is still inadequate to capture the variation of skews in the implied volatility surface. In this study, we document the stochastic variation of implied volatility skews in the interest rate cap market. To develop a term structure model that is consistent with the empirical phenomena, we incorporate the Wishart process into the standard LIBOR market model, namely, the LIBOR N‐dimensional Wishart (“LNW” for short) market model and derive a closed‐form, accurate, efficient caplet pricing formula. The capacity of the LNW model to capture stochastic skews is examined and compared with that of LIBOR multi‐Heston (“LMH” for short) market model with two and three stochastic volatilities. We find that the LNW model outperforms its LMH counterparts in terms of both in‐sample and out‐of‐sample pricing errors. © 2013 Wiley Periodicals, Inc. Jrl Fut Mark 34:1146–1169, 2014

Suggested Citation

  • Kwai S. Leung & Hon Y. Ng & Hoi Y. Wong, 2014. "Stochastic Skew in the Interest Rate Cap Market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(12), pages 1146-1169, December.
  • Handle: RePEc:wly:jfutmk:v:34:y:2014:i:12:p:1146-1169
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. JosE Da Fonseca & Martino Grasselli & Claudio Tebaldi, 2008. "A multifactor volatility Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 8(6), pages 591-604.
    2. Hoi Ying Wong & Jing Zhao, 2010. "Currency option pricing: Mean reversion and multi‐scale stochastic volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(10), pages 938-956, October.
    3. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    4. Haitao Li & Feng Zhao, 2009. "Nonparametric Estimation of State-Price Densities Implicit in Interest Rate Cap Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4335-4376, November.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Pierre Collin‐Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, August.
    7. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    8. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    9. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    10. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    11. Anders B. Trolle & Eduardo S. Schwartz, 2010. "An Empirical Analysis of the Swaption Cube," NBER Working Papers 16549, National Bureau of Economic Research, Inc.
    12. Haitao Li & Feng Zhao, 2006. "Unspanned Stochastic Volatility: Evidence from Hedging Interest Rate Derivatives," Journal of Finance, American Finance Association, vol. 61(1), pages 341-378, February.
    13. Martino Grasselli & Claudio Tebaldi, 2008. "Solvable Affine Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 135-153, January.
    14. Gourieroux, Christian & Sufana, Razvan, 2011. "Discrete time Wishart term structure models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 815-824, June.
    15. Wong, Hoi Ying & Guan, Peiqiu, 2011. "An FFT-network for Lévy option pricing," Journal of Banking & Finance, Elsevier, vol. 35(4), pages 988-999, April.
    16. C. Gourieroux, 2006. "Continuous Time Wishart Process for Stochastic Risk," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 177-217.
    17. Bing Han, 2007. "Stochastic Volatilities and Correlations of Bond Yields," Journal of Finance, American Finance Association, vol. 62(3), pages 1491-1524, June.
    18. Robert Jarrow & Haitao Li & Feng Zhao, 2007. "Interest Rate Caps “Smile” Too! But Can the LIBOR Market Models Capture the Smile?," Journal of Finance, American Finance Association, vol. 62(1), pages 345-382, February.
    19. Francis A. Longstaff & Pedro Santa‐Clara & Eduardo S. Schwartz, 2001. "The Relative Valuation of Caps and Swaptions: Theory and Empirical Evidence," Journal of Finance, American Finance Association, vol. 56(6), pages 2067-2109, December.
    20. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qi & Zhang, Chunyu & Ding, Yi & Xydis, George & Wang, Jianhui & Østergaard, Jacob, 2015. "Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response," Applied Energy, Elsevier, vol. 138(C), pages 695-706.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    2. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Massoud Heidari & Liuren Wu, 2002. "Term Structure of Interest Rates, Yield Curve Residuals, and the Consistent Pricing of Interest Rates and Interest Rate Derivatives," Finance 0207010, University Library of Munich, Germany, revised 10 Sep 2002.
    5. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    6. Da Fonseca, José & Gnoatto, Alessandro & Grasselli, Martino, 2013. "A flexible matrix Libor model with smiles," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 774-793.
    7. Haitao Li & Feng Zhao, 2009. "Nonparametric Estimation of State-Price Densities Implicit in Interest Rate Cap Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4335-4376, November.
    8. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    9. Backwell, Alex, 2021. "Unspanned stochastic volatility from an empirical and practical perspective," Journal of Banking & Finance, Elsevier, vol. 122(C).
    10. Heidari, Massoud & Wu, Liuren, 2009. "A Joint Framework for Consistently Pricing Interest Rates and Interest Rate Derivatives," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(3), pages 517-550, June.
    11. Robert Jarrow & Haitao Li & Feng Zhao, 2007. "Interest Rate Caps “Smile” Too! But Can the LIBOR Market Models Capture the Smile?," Journal of Finance, American Finance Association, vol. 62(1), pages 345-382, February.
    12. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    13. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    14. Peter Christoffersen & Christian Dorion & Kris Jacobs & Lotfi Karoui, 2014. "Nonlinear Kalman Filtering in Affine Term Structure Models," Management Science, INFORMS, vol. 60(9), pages 2248-2268, September.
    15. Carl Chiarella & Samuel Chege Maina & Christina Nikitopoulos-Sklibosios, 2010. "Markovian Defaultable HJM Term Structure Models with Unspanned Stochastic Volatility," Research Paper Series 283, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    17. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    18. Zhanyu Chen & Kai Zhang & Hongbiao Zhao, 2022. "A Skellam market model for loan prime rate options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 525-551, March.
    19. Hideyuki Takamizawa, 2015. "Predicting Interest Rate Volatility Using Information on the Yield Curve," International Review of Finance, International Review of Finance Ltd., vol. 15(3), pages 347-386, September.
    20. Carl Chiarella & Samuel Chege Maina & Christina Nikitopoulos Sklibosios, 2013. "Credit Derivatives Pricing With Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-28.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:34:y:2014:i:12:p:1146-1169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.