IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v6y2003i2p129-155.html
   My bibliography  Save this article

Finite Dimensional Affine Realisations of HJM Models in Terms of Forward Rates and Yields

Author

Listed:
  • Carl Chiarella
  • Oh Kwon

Abstract

Finite dimensional Markovian HJM term structure models provide ideal settings for the study of term structure dynamics and interest rate derivatives where the flexibility of the HJM framework and the tractability of Markovian models coexist. Consequently, these models became the focus of a series of papers including Carverhill (1994), Ritchken and Sankarasubramanian (1995), Bhar and Chiarella (1997), Inui and Kijima (1998), de Jong and Santa-Clara (1999), Björk and Svensson (2001) and Chiarella and Kwon (2001a). However, these models usually required the introduction of a large number of state variables which, at first sight, did not appear to have clear links to the market observed quantities, and the explicit realisations of the forward rate curve in terms of the state variables were unclear. In this paper, it is shown that the forward rate curves for these models are affine functions of the state variables, and conversely that the state variables in these models can be expressed as affine functions of a finite number of forward rates or yields. This property is useful, for example, in the estimation of model parameters. The paper also provides explicit formulae for the bond prices in terms of the state variables that generalise the formulae given in Inui and Kijima (1998), and applies the framework to obtain affine representations for a number of popular interest rate models. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • Carl Chiarella & Oh Kwon, 2003. "Finite Dimensional Affine Realisations of HJM Models in Terms of Forward Rates and Yields," Review of Derivatives Research, Springer, vol. 6(2), pages 129-155, May.
  • Handle: RePEc:kap:revdev:v:6:y:2003:i:2:p:129-155
    DOI: 10.1023/A:1027325227773
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1027325227773
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1027325227773?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    2. Andrew Carverhill, 1994. "When Is The Short Rate Markovian?," Mathematical Finance, Wiley Blackwell, vol. 4(4), pages 305-312, October.
    3. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    4. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    5. Tomas Björk & Lars Svensson, 2001. "On the Existence of Finite‐Dimensional Realizations for Nonlinear Forward Rate Models," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 205-243, April.
    6. de Jong, Frank & Santa-Clara, Pedro, 1999. "The Dynamics of the Forward Interest Rate Curve: A Formulation with State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(1), pages 131-157, March.
    7. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    8. Bliss, Robert R & Ritchken, Peter, 1996. "Empirical Tests of Two State-Variable Heath-Jarrow-Morton Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(3), pages 452-476, August.
    9. Carl Chiarella & Oh Kang Kwon, 2001. "Forward rate dependent Markovian transformations of the Heath-Jarrow-Morton term structure model," Finance and Stochastics, Springer, vol. 5(2), pages 237-257.
    10. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure1," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl Chiarella & Oh-Kang Kwon, 2001. "State Variables and the Affine Nature of Markovian HJM Term Structure Models," Research Paper Series 52, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    4. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
    5. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, December.
    6. Li, Haitao & Ye, Xiaoxia & Yu, Fan, 2020. "Unifying Gaussian dynamic term structure models from a Heath–Jarrow–Morton perspective," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1153-1167.
    7. Haitao Li & Xiaoxia Ye, 2013. "A Type of HJM Based Affine Model: Theory and Empirical Evidence," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    8. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
    9. Ram Bhar & Carl Chiarella & Thuy-Duong To, 2004. "Estimating the Volatility Structure of an Arbitrage-Free Interest Rate Model Via the Futures Markets," Finance 0409003, University Library of Munich, Germany.
    10. Ram Bhar & Carl Chiarella, 2000. "Approximating Heath-Jarrow-Morton Non-Markovian Term Structure of Interest Rate Models with Markovian Systems," Working Paper Series 76, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    11. Mikael Elhouar, 2008. "Finite-dimensional Realizations of Regime-switching HJM Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(4), pages 331-354.
    12. Björk, Tomas, 2003. "On the Geometry of Interest Rate Models," SSE/EFI Working Paper Series in Economics and Finance 545, Stockholm School of Economics.
    13. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    14. Jing Yuan & Yan Peng & Zongwu Cai & Zhengyi Zhang, 2021. "A Quantitative Evaluation to Interest Rate Marketization Reform in China," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202122, University of Kansas, Department of Economics.
    15. Chiarella, Carl & Hung, Hing & T, Thuy-Duong, 2009. "The volatility structure of the fixed income market under the HJM framework: A nonlinear filtering approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2075-2088, April.
    16. Ram Bhar & Carl Chiarella & Nadima El-Hassan & Xiaosu Zheng, 2000. "The Reduction of Forward Rate Dependent Volatility HJM Models to Markovian Form: Pricing European Bond Option," Research Paper Series 36, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Casassus, Jaime & Collin-Dufresne, Pierre & Goldstein, Bob, 2005. "Unspanned stochastic volatility and fixed income derivatives pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2723-2749, November.
    18. Björk, Tomas, 2000. "A Geometric View of Interest Rate Theory," SSE/EFI Working Paper Series in Economics and Finance 419, Stockholm School of Economics, revised 21 Dec 2000.
    19. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    20. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:6:y:2003:i:2:p:129-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.