IDEAS home Printed from https://ideas.repec.org/p/upj/weupjo/20-324.html
   My bibliography  Save this paper

Using Nonexperimental Methods to Address Noncompliance

Author

Listed:
  • Daniel Litwok

    (Abt Associates)

Abstract

The analysis compares estimates of the incremental impact for those who receive HPOG with a program enhancement to the standard HPOG program. The experimental benchmark for the incremental impact comes from two-stage least squares with random assignment as an instrumental variable for enhancement take-up. Then, ignoring the randomly assigned conditions, the analysis estimates the counterfactual for those who “take up” the enhancement using ordinary least squares and inverse propensity weighting. The analysis also tests whether adding information that is only available due to the experiment—who complied with their randomization status and who did not—improves the nonexperimental estimates. The analysis compares these estimates using statistical tests recommended by the within-study comparison literature.

Suggested Citation

  • Daniel Litwok, 2020. "Using Nonexperimental Methods to Address Noncompliance," Upjohn Working Papers 20-324, W.E. Upjohn Institute for Employment Research.
  • Handle: RePEc:upj:weupjo:20-324
    as

    Download full text from publisher

    File URL: https://research.upjohn.org/cgi/viewcontent.cgi?article=1343&context=up_workingpapers
    Download Restriction: This material is copyrighted. Permission is required to reproduce any or all parts.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matias Busso & John DiNardo & Justin McCrary, 2014. "New Evidence on the Finite Sample Properties of Propensity Score Reweighting and Matching Estimators," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 885-897, December.
    2. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    3. Charles Michalopoulos & Howard S. Bloom & Carolyn J. Hill, 2004. "Can Propensity-Score Methods Match the Findings from a Random Assignment Evaluation of Mandatory Welfare-to-Work Programs?," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 156-179, February.
    4. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    5. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    6. Thomas D. Cook & William R. Shadish & Vivian C. Wong, 2008. "Three conditions under which experiments and observational studies produce comparable causal estimates: New findings from within-study comparisons," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 27(4), pages 724-750.
    7. Atila Abdulkadiroğlu & Joshua D. Angrist & Susan M. Dynarski & Thomas J. Kane & Parag A. Pathak, 2011. "Accountability and Flexibility in Public Schools: Evidence from Boston's Charters And Pilots," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(2), pages 699-748.
    8. Thomas Fraker & Rebecca Maynard, 1987. "The Adequacy of Comparison Group Designs for Evaluations of Employment-Related Programs," Journal of Human Resources, University of Wisconsin Press, vol. 22(2), pages 194-227.
    9. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    10. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    11. repec:mpr:mprres:3694 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vivian C. Wong & Peter M. Steiner & Kylie L. Anglin, 2018. "What Can Be Learned From Empirical Evaluations of Nonexperimental Methods?," Evaluation Review, , vol. 42(2), pages 147-175, April.
    2. Andrew P. Jaciw, 2016. "Assessing the Accuracy of Generalized Inferences From Comparison Group Studies Using a Within-Study Comparison Approach," Evaluation Review, , vol. 40(3), pages 199-240, June.
    3. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    4. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    5. Fatih Unlu & Douglas Lee Lauen & Sarah Crittenden Fuller & Tiffany Berglund & Elc Estrera, 2021. "Can Quasi‐Experimental Evaluations That Rely On State Longitudinal Data Systems Replicate Experimental Results?," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 40(2), pages 572-613, March.
    6. Justine Burns & Malcolm Kewsell & Rebecca Thornton, 2009. "Evaluating the Impact of Health Programmes," SALDRU Working Papers 40, Southern Africa Labour and Development Research Unit, University of Cape Town.
    7. Robin Jacob & Marie-Andree Somers & Pei Zhu & Howard Bloom, 2016. "The Validity of the Comparative Interrupted Time Series Design for Evaluating the Effect of School-Level Interventions," Evaluation Review, , vol. 40(3), pages 167-198, June.
    8. Daniel Litwok, 2023. "Estimating the Impact of Emergency Assistance on Educational Progress for Low-Income Adults: Experimental and Nonexperimental Evidence," Evaluation Review, , vol. 47(2), pages 231-263, April.
    9. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    10. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    11. Duflo, Esther & Glennerster, Rachel & Kremer, Michael, 2008. "Using Randomization in Development Economics Research: A Toolkit," Handbook of Development Economics, in: T. Paul Schultz & John A. Strauss (ed.), Handbook of Development Economics, edition 1, volume 4, chapter 61, pages 3895-3962, Elsevier.
    12. Peter R. Mueser & Kenneth R. Troske & Alexey Gorislavsky, 2007. "Using State Administrative Data to Measure Program Performance," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 761-783, November.
    13. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    14. Ferraro, Paul J. & Miranda, Juan José, 2014. "The performance of non-experimental designs in the evaluation of environmental programs: A design-replication study using a large-scale randomized experiment as a benchmark," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 344-365.
    15. Lechner, Michael & Wunsch, Conny, 2013. "Sensitivity of matching-based program evaluations to the availability of control variables," Labour Economics, Elsevier, vol. 21(C), pages 111-121.
    16. Deborah A. Cobb‐Clark & Thomas Crossley, 2003. "Econometrics for Evaluations: An Introduction to Recent Developments," The Economic Record, The Economic Society of Australia, vol. 79(247), pages 491-511, December.
    17. Ferman, Bruno, 2021. "Matching estimators with few treated and many control observations," Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
    18. Yonatan Eyal, 2020. "Self-Assessment Variables as a Source of Information in the Evaluation of Intervention Programs: A Theoretical and Methodological Framework," SAGE Open, , vol. 10(1), pages 21582440198, January.
    19. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    20. Fortson, Kenneth & Gleason, Philip & Kopa, Emma & Verbitsky-Savitz, Natalya, 2015. "Horseshoes, hand grenades, and treatment effects? Reassessing whether nonexperimental estimators are biased," Economics of Education Review, Elsevier, vol. 44(C), pages 100-113.

    More about this item

    Keywords

    Treatment effects; Experimental methods; Nonexperimental methods; Within-study comparison;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upj:weupjo:20-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/upjohus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.