IDEAS home Printed from https://ideas.repec.org/a/wly/jpamgt/v27y2008i4p724-750.html
   My bibliography  Save this article

Three conditions under which experiments and observational studies produce comparable causal estimates: New findings from within-study comparisons

Author

Listed:
  • Thomas D. Cook

    (Professor of Sociology, Northwestern University)

  • William R. Shadish

    (Professor of Psychology, University of California, Merced)

  • Vivian C. Wong

    (Northwestern University)

Abstract

This paper analyzes 12 recent within-study comparisons contrasting causal estimates from a randomized experiment with those from an observational study sharing the same treatment group. The aim is to test whether different causal estimates result when a counterfactual group is formed, either with or without random assignment, and when statistical adjustments for selection are made in the group from which random assignment is absent. We identify three studies comparing experiments and regression-discontinuity (RD) studies. They produce quite comparable causal estimates at points around the RD cutoff. We identify three other studies where the quasi-experiment involves careful intact group matching on the pretest. Despite the logical possibility of hidden bias in this instance, all three cases also reproduce their experimental estimates, especially if the match is geographically local. We then identify two studies where the treatment and nonrandomized comparison groups manifestly differ at pretest but where the selection process into treatment is completely or very plausibly known. Here too, experimental results are recreated. Two of the remaining studies result in correspondent experimental and nonexperimental results under some circumstances but not others, while two others produce different experimental and nonexperimental estimates, though in each case the observational study was poorly designed and analyzed. Such evidence is more promising than what was achieved in past within-study comparisons, most involving job training. Reasons for this difference are discussed. © 2008 by the Association for Public Policy Analysis and Management.

Suggested Citation

  • Thomas D. Cook & William R. Shadish & Vivian C. Wong, 2008. "Three conditions under which experiments and observational studies produce comparable causal estimates: New findings from within-study comparisons," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 27(4), pages 724-750.
  • Handle: RePEc:wly:jpamgt:v:27:y:2008:i:4:p:724-750
    DOI: 10.1002/pam.20375
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/pam.20375
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: https://libkey.io/10.1002/pam.20375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven Glazerman & Dan M. Levy & David Myers, 2003. "Nonexperimental Versus Experimental Estimates of Earnings Impacts," The ANNALS of the American Academy of Political and Social Science, , vol. 589(1), pages 63-93, September.
    2. James J. Heckman & Jeffrey A. Smith, 1995. "Assessing the Case for Social Experiments," Journal of Economic Perspectives, American Economic Association, vol. 9(2), pages 85-110, Spring.
    3. Cook, Thomas D., 2008. ""Waiting for Life to Arrive": A history of the regression-discontinuity design in Psychology, Statistics and Economics," Journal of Econometrics, Elsevier, vol. 142(2), pages 636-654, February.
    4. David McKenzie & John Gibson & Steven Stillman, 2010. "How Important Is Selection? Experimental vs. Non-Experimental Measures of the Income Gains from Migration," Journal of the European Economic Association, MIT Press, vol. 8(4), pages 913-945, June.
    5. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    6. Roberto Agodini & Mark Dynarski, "undated". "Are Experiments the Only Option? A Look at Dropout Prevention Programs," Mathematica Policy Research Reports 51241adbf9fa4a26add6d54c5, Mathematica Policy Research.
    7. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    8. Roberto Agodini & Mark Dynarski, 2004. "Are Experiments the Only Option? A Look at Dropout Prevention Programs," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 180-194, February.
    9. repec:mpr:mprres:3694 is not listed on IDEAS
    10. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferraro, Paul J. & Miranda, Juan José, 2014. "The performance of non-experimental designs in the evaluation of environmental programs: A design-replication study using a large-scale randomized experiment as a benchmark," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 344-365.
    2. Vivian C. Wong & Peter M. Steiner & Kylie L. Anglin, 2018. "What Can Be Learned From Empirical Evaluations of Nonexperimental Methods?," Evaluation Review, , vol. 42(2), pages 147-175, April.
    3. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    4. Fatih Unlu & Douglas Lee Lauen & Sarah Crittenden Fuller & Tiffany Berglund & Elc Estrera, 2021. "Can Quasi‐Experimental Evaluations That Rely On State Longitudinal Data Systems Replicate Experimental Results?," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 40(2), pages 572-613, March.
    5. Fortson, Kenneth & Gleason, Philip & Kopa, Emma & Verbitsky-Savitz, Natalya, 2015. "Horseshoes, hand grenades, and treatment effects? Reassessing whether nonexperimental estimators are biased," Economics of Education Review, Elsevier, vol. 44(C), pages 100-113.
    6. Sudhanshu Handa & John A. Maluccio, 2010. "Matching the Gold Standard: Comparing Experimental and Nonexperimental Evaluation Techniques for a Geographically Targeted Program," Economic Development and Cultural Change, University of Chicago Press, vol. 58(3), pages 415-447, April.
    7. Andrew P. Jaciw, 2016. "Applications of a Within-Study Comparison Approach for Evaluating Bias in Generalized Causal Inferences From Comparison Groups Studies," Evaluation Review, , vol. 40(3), pages 241-276, June.
    8. Ravallion, Martin, 2008. "Evaluating Anti-Poverty Programs," Handbook of Development Economics, in: T. Paul Schultz & John A. Strauss (ed.), Handbook of Development Economics, edition 1, volume 4, chapter 59, pages 3787-3846, Elsevier.
    9. Justine Burns & Malcolm Kewsell & Rebecca Thornton, 2009. "Evaluating the Impact of Health Programmes," SALDRU Working Papers 40, Southern Africa Labour and Development Research Unit, University of Cape Town.
    10. Andrew P. Jaciw, 2016. "Assessing the Accuracy of Generalized Inferences From Comparison Group Studies Using a Within-Study Comparison Approach," Evaluation Review, , vol. 40(3), pages 199-240, June.
    11. Kenneth Fortson & Natalya Verbitsky-Savitz & Emma Kopa & Philip Gleason, 2012. "Using an Experimental Evaluation of Charter Schools to Test Whether Nonexperimental Comparison Group Methods Can Replicate Experimental Impact Estimates," Mathematica Policy Research Reports 27f871b5b7b94f3a80278a593, Mathematica Policy Research.
    12. Peter R. Mueser & Kenneth R. Troske & Alexey Gorislavsky, 2007. "Using State Administrative Data to Measure Program Performance," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 761-783, November.
    13. Miguel Angel Malo & Fernando Muñoz-Bullón, 2006. "Employment promotion measures and the quality of the job match for persons with disabilities," Hacienda Pública Española / Review of Public Economics, IEF, vol. 179(4), pages 79-111, September.
    14. Lechner, Michael & Wunsch, Conny, 2013. "Sensitivity of matching-based program evaluations to the availability of control variables," Labour Economics, Elsevier, vol. 21(C), pages 111-121.
    15. Sauermann, Jan & Stenberg, Anders, 2020. "Assessing Selection Bias in Non-Experimental Estimates of the Returns to Workplace Training," IZA Discussion Papers 13789, Institute of Labor Economics (IZA).
    16. Kenneth Fortson & Philip Gleason & Emma Kopa & Natalya Verbitsky-Savitz, "undated". "Horseshoes, Hand Grenades, and Treatment Effects? Reassessing Bias in Nonexperimental Estimators," Mathematica Policy Research Reports 1c24988cd5454dd3be51fbc2c, Mathematica Policy Research.
    17. Peter Z. Schochet & John Burghardt, 2007. "Using Propensity Scoring to Estimate Program-Related Subgroup Impacts in Experimental Program Evaluations," Evaluation Review, , vol. 31(2), pages 95-120, April.
    18. Chakravarty, Shubha & Lundberg, Mattias & Nikolov, Plamen & Zenker, Juliane, 2019. "Vocational training programs and youth labor market outcomes: Evidence from Nepal," Journal of Development Economics, Elsevier, vol. 136(C), pages 71-110.
    19. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.
    20. Elizabeth Ty Wilde & Robinson Hollister, 2007. "How close is close enough? Evaluating propensity score matching using data from a class size reduction experiment," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 26(3), pages 455-477.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jpamgt:v:27:y:2008:i:4:p:724-750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/journal/34787/home .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.