IDEAS home Printed from https://ideas.repec.org/p/ukc/ukcedp/1201.html
   My bibliography  Save this paper

Interpreting the Hours-Technology time-varying relationship

Author

Listed:
  • Cristiano Cantore
  • Filippo Ferroni
  • Miguel A León-Ledesma

Abstract

We investigate the time variation in the correlation between hours and technology shocks using a structural business cycle model. We propose an RBC model with a Constant Elasticity of Substitution (CES) production function that allows for capital- and labor-augmenting technology shocks. We estimate the model using US data with Bayesian techniques. In the full sample, we find (i) evidence in favor of a less than unitary elasticity of substitution (rejecting Cobb-Douglas) and (ii) a sizable role for capital augmenting shock for business cycles fluctuations. In rolling sub-samples, we document that the impact of technology shocks on hours worked varies over time and switches from negative to positive towards the end of the sample. We argue that this change is due to the increase in the elasticity of factor substitution. That is, labor and capital became less complementary throughout the sample inducing a change in the sign and size of the the response of hours. We conjecture that this change may have been induced by a change in the skill composition of the labor input.

Suggested Citation

  • Cristiano Cantore & Filippo Ferroni & Miguel A León-Ledesma, 2012. "Interpreting the Hours-Technology time-varying relationship," Studies in Economics 1201, School of Economics, University of Kent.
  • Handle: RePEc:ukc:ukcedp:1201
    as

    Download full text from publisher

    File URL: https://www.kent.ac.uk/economics/repec/1201.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gali, Jordi & Lopez-Salido, J. David & Valles, Javier, 2003. "Technology shocks and monetary policy: assessing the Fed's performance," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 723-743, May.
    2. Jordi Galí & Thijs van Rens, 2021. "The Vanishing Procyclicality of Labour Productivity [Why have business cycle fluctuations become less volatile?]," The Economic Journal, Royal Economic Society, vol. 131(633), pages 302-326.
    3. Cristina Fuentes-Albero & Maxym Kryshko & José-Víctor Ríos-Rull & Raul Santaeulalia-Llopis & Frank Schorfheide, 2009. "Methods versus substance: measuring the effects of technology shocks on hours," Staff Report 433, Federal Reserve Bank of Minneapolis.
    4. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    5. Jordi Galí & Pau Rabanal, 2005. "Technology Shocks and Aggregate Fluctuations: How Well Does the Real Business Cycle Model Fit Postwar US Data?," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 225-318, National Bureau of Economic Research, Inc.
    6. Cristiano Cantore & Miguel León-Ledesma & Peter McAdam & Alpo Willman, 2014. "Shocking Stuff: Technology, Hours, And Factor Substitution," Journal of the European Economic Association, European Economic Association, vol. 12(1), pages 108-128, February.
    7. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(1), pages 147-180.
    8. Thijs van Rens & Almut Balleer, 2007. "Cyclical Skill-Biased Technological Change," 2007 Meeting Papers 62, Society for Economic Dynamics.
    9. Alvarez-Cuadrado, Francisco & Long, Ngo & Poschke, Markus, 2017. "Capital-labor substitution, structural change and growth," Theoretical Economics, Econometric Society, vol. 12(3), September.
    10. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2010. "Identifying the Elasticity of Substitution with Biased Technical Change," American Economic Review, American Economic Association, vol. 100(4), pages 1330-1357, September.
    11. Alessio Moro, 2012. "The Structural Transformation Between Manufacturing and Services and the Decline in the US GDP Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(3), pages 402-415, July.
    12. Julio J. Rotemberg, 2008. "Cyclical Wages in a Search-and-Bargaining Model with Large Firms," NBER Chapters, in: NBER International Seminar on Macroeconomics 2006, pages 65-114, National Bureau of Economic Research, Inc.
    13. Whelan, Karl T., 2009. "Technology shocks and hours worked: Checking for robust conclusions," Journal of Macroeconomics, Elsevier, vol. 31(2), pages 231-239, June.
    14. Kahn, James A. & Rich, Robert W., 2007. "Tracking the new economy: Using growth theory to detect changes in trend productivity," Journal of Monetary Economics, Elsevier, vol. 54(6), pages 1670-1701, September.
    15. Canova, Fabio & Ferroni, Filippo, 2012. "The dynamics of US inflation: Can monetary policy explain the changes?," Journal of Econometrics, Elsevier, vol. 167(1), pages 47-60.
    16. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    17. Luca Gambetti & Jordi Galí, 2009. "On the Sources of the Great Moderation," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 26-57, January.
    18. Vasco Carvalho & Xavier Gabaix, 2013. "The Great Diversification and Its Undoing," American Economic Review, American Economic Association, vol. 103(5), pages 1697-1727, August.
    19. Robert S. Chirinko, 2008. "ó: The Long And Short Of It," CESifo Working Paper Series 2234, CESifo.
    20. Roberts John M., 2001. "Estimates of the Productivity Trend Using Time-Varying Parameter Techniques," The B.E. Journal of Macroeconomics, De Gruyter, vol. 1(1), pages 1-32, July.
    21. Canova, Fabio & Gambetti, Luca, 2009. "Structural changes in the US economy: Is there a role for monetary policy?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 477-490, February.
    22. Miyagiwa, Kaz & Papageorgiou, Chris, 2007. "Endogenous aggregate elasticity of substitution," Journal of Economic Dynamics and Control, Elsevier, vol. 31(9), pages 2899-2919, September.
    23. Acemoglu, Daron & Aghion, Philippe & Violante, Giovanni L., 2001. "Deunionization, technical change and inequality," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 55(1), pages 229-264, December.
    24. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    25. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    26. Kevin J. Stiroh, 2009. "Volatility Accounting: A Production Perspective on Increased Economic Stability," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 671-696, June.
    27. Yongsung Chang & Taeyoung Doh & Frank Schorfheide, 2007. "Non‐stationary Hours in a DSGE Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1357-1373, September.
    28. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    29. Neville Francis & Valerie A. Ramey, 2009. "Measures of per Capita Hours and Their Implications for the Technology-Hours Debate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1071-1097, September.
    30. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2008. "How Structural Are Structural Parameters?," NBER Chapters, in: NBER Macroeconomics Annual 2007, Volume 22, pages 83-137, National Bureau of Economic Research, Inc.
    31. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    32. Francesco Nucci & Marianna Riggi, 2009. "The Great Moderation and Changes in the Structure of Labor Compensation," Working Papers in Public Economics 124, University of Rome La Sapienza, Department of Economics and Law.
    33. Per Krusell & Lee E. Ohanian & JosÈ-Victor RÌos-Rull & Giovanni L. Violante, 2000. "Capital-Skill Complementarity and Inequality: A Macroeconomic Analysis," Econometrica, Econometric Society, vol. 68(5), pages 1029-1054, September.
    34. Chirinko, Robert S., 2008. "[sigma]: The long and short of it," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 671-686, June.
    35. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.
    36. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    37. David H. Autor & Lawrence F. Katz & Melissa S. Kearney, 2008. "Trends in U.S. Wage Inequality: Revising the Revisionists," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 300-323, May.
    38. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
    39. Daron Acemoglu, 2002. "Technical Change, Inequality, and the Labor Market," Journal of Economic Literature, American Economic Association, vol. 40(1), pages 7-72, March.
    40. Lutz Hendricks, 2010. "Cross-country variation in educational attainment: structural change or within-industry skill upgrading?," Journal of Economic Growth, Springer, vol. 15(3), pages 205-233, September.
    41. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2010. "The effects of technology shocks on hours and output: a robustness analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 755-773.
    42. John Geweke, 1999. "Using Simulation Methods for Bayesian Econometric Models," Computing in Economics and Finance 1999 832, Society for Computational Economics.
    43. Fernald, John G., 2007. "Trend breaks, long-run restrictions, and contractionary technology improvements," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2467-2485, November.
    44. Chris Papageorgiou & Marianne Saam, 2008. "Two‐level CES Production Technology in the Solow and Diamond Growth Models," Scandinavian Journal of Economics, Wiley Blackwell, vol. 110(1), pages 119-143, March.
    45. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    46. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    47. David H. Autor & Lawrence F. Katz & Alan B. Krueger, 1998. "Computing Inequality: Have Computers Changed the Labor Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1169-1213.
    48. Sargent, Thomas J & Wallace, Neil, 1974. "The Elasticity of Substitution and Cyclical Behavior of Productivity, Wages, and Labor's Share," American Economic Review, American Economic Association, vol. 64(2), pages 257-263, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hurtado, Samuel, 2014. "DSGE models and the Lucas critique," Economic Modelling, Elsevier, vol. 44(S1), pages 12-19.
    2. repec:spo:wpmain:info:hdl:2441/2beljp6noq9u6oh9p9agr8ugra is not listed on IDEAS
    3. Ferraresi Tommaso & Roventini Andrea & Semmler Willi, 2019. "Macroeconomic Regimes, Technological Shocks and Employment Dynamics," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(4), pages 599-625, August.
    4. repec:hal:spmain:info:hdl:2441/2beljp6noq9u6oh9p9agr8ugra is not listed on IDEAS
    5. Cristiano Cantore & Paul Levine & Giovanni Melina, 2014. "A Fiscal Stimulus and Jobless Recovery," Scandinavian Journal of Economics, Wiley Blackwell, vol. 116(3), pages 669-701, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cantore, Cristiano & Ferroni, Filippo & León-Ledesma, Miguel A., 2017. "The dynamics of hours worked and technology," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 67-82.
    2. Mumtaz, Haroon & Zanetti, Francesco, 2012. "Neutral technology shocks and employment dynamics: results based on an RBC identification scheme," Bank of England working papers 453, Bank of England.
    3. Luca Gambetti & Jordi Galí, 2009. "On the Sources of the Great Moderation," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 26-57, January.
    4. Cristiano Cantore & Miguel León-Ledesma & Peter McAdam & Alpo Willman, 2014. "Shocking Stuff: Technology, Hours, And Factor Substitution," Journal of the European Economic Association, European Economic Association, vol. 12(1), pages 108-128, February.
    5. Netsunajev, Aleksei, 2013. "Reaction to technology shocks in Markov-switching structural VARs: Identification via heteroskedasticity," Journal of Macroeconomics, Elsevier, vol. 36(C), pages 51-62.
    6. Ferraresi Tommaso & Roventini Andrea & Semmler Willi, 2019. "Macroeconomic Regimes, Technological Shocks and Employment Dynamics," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(4), pages 599-625, August.
    7. Cantore, Cristiano & Levine, Paul & Pearlman, Joseph & Yang, Bo, 2015. "CES technology and business cycle fluctuations," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 133-151.
    8. Canova, Fabio & Ferroni, Filippo, 2012. "The dynamics of US inflation: Can monetary policy explain the changes?," Journal of Econometrics, Elsevier, vol. 167(1), pages 47-60.
    9. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    10. Nucci, Francesco & Riggi, Marianna, 2013. "Performance pay and changes in U.S. labor market dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2796-2813.
    11. Juan Rubio-Ramirez & Jesus Fernandez-Villaverde & Pablo A. Guerron-Quintana, 2010. "Fortune or Virtue: Time Variant Volatilities versus Parameter Drifting in U.S. Data," 2010 Meeting Papers 270, Society for Economic Dynamics.
    12. Belongia, Michael T. & Ireland, Peter N., 2016. "The evolution of U.S. monetary policy: 2000–2007," Journal of Economic Dynamics and Control, Elsevier, vol. 73(C), pages 78-93.
    13. Everaert, Gerdie & Iseringhausen, Martin, 2018. "Measuring the international dimension of output volatility," Journal of International Money and Finance, Elsevier, vol. 81(C), pages 20-39.
    14. repec:spo:wpmain:info:hdl:2441/2beljp6noq9u6oh9p9agr8ugra is not listed on IDEAS
    15. Andre Kurmann & Julien Champagne, 2010. "The Great Increase in Relative Volatility of Real Wages in the United States," 2010 Meeting Papers 674, Society for Economic Dynamics.
    16. Qureshi, Irfan, 2015. "Monetary Policy Shifts and Central Bank Independence," MPRA Paper 81646, University Library of Munich, Germany, revised Sep 2017.
    17. Nikolaos Charalampidis, 2020. "The U.S. Labor Income Share And Automation Shocks," Economic Inquiry, Western Economic Association International, vol. 58(1), pages 294-318, January.
    18. repec:hal:spmain:info:hdl:2441/2beljp6noq9u6oh9p9agr8ugra is not listed on IDEAS
    19. Dimitris Korobilis, 2013. "Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 157-179, April.
    20. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    21. Mitra, Aruni, 2024. "The productivity puzzle and the decline of unions," Journal of Economic Dynamics and Control, Elsevier, vol. 159(C).
    22. Olivier Cardi & Romain Restout, 2023. "Why Hours Worked Decline Less after Technology Shocks?Â," Working Papers 396800288, Lancaster University Management School, Economics Department.

    More about this item

    Keywords

    Real Business Cycles models; Constant Elasticity of Substitution production function; Hours worked dynamics;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ukc:ukcedp:1201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr Anirban Mitra (email available below). General contact details of provider: https://www.kent.ac.uk/economics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.