IDEAS home Printed from https://ideas.repec.org/p/ucm/doicae/1917.html
   My bibliography  Save this paper

What They Did Not Tell You About Algebraic (Non-)Existence, Mathematical (IR-)Regularity and (Non-)Asymptotic Properties of the Dynamic Conditional Correlation (DCC) Model

Author

Listed:
  • Michael McAleer

    ( Department of Quantitative Finance National Tsing Hua University, Taiwan and Econometric Institute Erasmus School of Economics Erasmus University Rotterdam, The Netherlands and Department of Quantitative Economics Complutense University of Madrid, Spain And Institute of Advanced Sciences Yokohama National University, Japan.)

Abstract

In order to hedge efficiently, persistently high negative covariances or, equivalently, correlations, between risky assets and the hedging instruments are intended to mitigate against financial risk and subsequent losses. If there is more than one hedging instrument, multivariate covariances and correlations will have to be calculated. As optimal hedge ratios are unlikely to remain constant using high frequency data, it is essential to specify dynamic time-varying models of covariances and correlations. These values can either be determined analytically or numerically on the basis of highly advanced computer simulations. Analytical developments are occasionally promulgated for multivariate conditional volatility models. The primary purpose of the paper is to analyse purported analytical developments for the only multivariate dynamic conditional correlation model to have been developed to date, namely Engle’s (2002) widely-used Dynamic Conditional Correlation (DCC) model. Dynamic models are not straightforward (or even possible) to translate in terms of the algebraic existence, underlying stochastic processes, specification, mathematical regularity conditions, and asymptotic properties of consistency and asymptotic normality, or the lack thereof. The paper presents a critical analysis, discussion, evaluation and presentation of caveats relating to the DCC model, and an emphasis on the numerous dos and don’ts in implementing the DCC and related model in practice.

Suggested Citation

  • Michael McAleer, 2019. "What They Did Not Tell You About Algebraic (Non-)Existence, Mathematical (IR-)Regularity and (Non-)Asymptotic Properties of the Dynamic Conditional Correlation (DCC) Model," Documentos de Trabajo del ICAE 2019-17, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  • Handle: RePEc:ucm:doicae:1917
    as

    Download full text from publisher

    File URL: https://eprints.ucm.es/id/eprint/54809/1/1917.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity and (Non-) Asymptotic Properties of the Full BEKK Dynamic Conditional Covariance Model," JRFM, MDPI, vol. 12(2), pages 1-7, April.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Michael McAleer, 2014. "Asymmetry and Leverage in Conditional Volatility Models," Econometrics, MDPI, vol. 2(3), pages 1-6, September.
    4. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity, and (Non-) Asymptotic Properties of the Dynamic Conditional Correlation (DCC) Model," JRFM, MDPI, vol. 12(2), pages 1-9, April.
    7. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things you should know about DCC," Tinbergen Institute Discussion Papers 13-048/III, Tinbergen Institute.
    8. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know about the Dynamic Conditional Correlation Representation," Econometrics, MDPI, vol. 1(1), pages 1-12, June.
    9. Oecd, 2002. "Access for Business," OECD Digital Economy Papers 67, OECD Publishing.
    10. McAleer, Michael & Chan, Felix & Hoti, Suhejla & Lieberman, Offer, 2008. "Generalized Autoregressive Conditional Correlation," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1554-1583, December.
    11. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    12. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    13. Gian Piero Aielli, 2011. "Dynamic Conditional Correlation: On properties and estimation," "Marco Fanno" Working Papers 0142, Dipartimento di Scienze Economiche "Marco Fanno".
    14. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elie Bouri & Konstantinos Gkillas & Rangan Gupta, 2020. "Trade uncertainties and the hedging abilities of Bitcoin," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 49(3), September.
    2. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity, and (Non-) Asymptotic Properties of the Dynamic Conditional Correlation (DCC) Model," JRFM, MDPI, vol. 12(2), pages 1-9, April.
    3. Hafner, Christian M. & Herwartz, Helmut & Maxand, Simone, 2022. "Identification of structural multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 227(1), pages 212-227.
    4. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    5. Yu-Ann Wang & Chia-Lin Chang, 2024. "Portfolio selection from risk transfer mechanisms in a time of crisis for renewable energy markets," KIER Working Papers 1108, Kyoto University, Institute of Economic Research.
    6. Zolfaghari, Mehdi & Ghoddusi, Hamed & Faghihian, Fatemeh, 2020. "Volatility spillovers for energy prices: A diagonal BEKK approach," Energy Economics, Elsevier, vol. 92(C).
    7. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity and (Non-) Asymptotic Properties of the Full BEKK Dynamic Conditional Covariance Model," JRFM, MDPI, vol. 12(2), pages 1-7, April.
    8. Aloui, Chaker & Hamida, Hela ben & Yarovaya, Larisa, 2021. "Are Islamic gold-backed cryptocurrencies different?," Finance Research Letters, Elsevier, vol. 39(C).
    9. Chia-Lin Chang & Michael McAleer & Jiarong Tian, 2019. "Modeling and Testing Volatility Spillovers in Oil and Financial Markets for the USA, the UK, and China," Energies, MDPI, vol. 12(8), pages 1-24, April.
    10. Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019. "The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
    11. Semei Coronado & Rangan Gupta & Besma Hkiri & Omar Rojas, 2020. "Time-Varying Spillovers between Currency and Stock Markets in the USA: Historical Evidence From More than Two Centuries," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(4), pages 44-76, December.
    12. Konstantinos Gkillas & Christoforos Konstantatos & Costas Siriopoulos, 2021. "Uncertainty Due to Infectious Diseases and Stock–Bond Correlation," Econometrics, MDPI, vol. 9(2), pages 1-18, April.
    13. Hou, Yang (Greg) & Li, Steven, 2020. "Volatility and skewness spillover between stock index and stock index futures markets during a crash period: New evidence from China," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 166-188.
    14. Katsiampa, Paraskevi & Yarovaya, Larisa & Zięba, Damian, 2022. "High-frequency connectedness between Bitcoin and other top-traded crypto assets during the COVID-19 crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    15. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    16. Mai, Te-Ke & Foley, Aoife M. & McAleer, Michael & Chang, Chia-Lin, 2022. "Impact of COVID-19 on returns-volatility spillovers in national and regional carbon markets in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    17. Hsu, Shu-Han & Sheu, Chwen & Yoon, Jiho, 2021. "Risk spillovers between cryptocurrencies and traditional currencies and gold under different global economic conditions," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Lin Chang & Michael McAleer & Jiarong Tian, 2019. "Modeling and Testing Volatility Spillovers in Oil and Financial Markets for the USA, the UK, and China," Energies, MDPI, vol. 12(8), pages 1-24, April.
    2. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," JRFM, MDPI, vol. 11(4), pages 1-25, September.
    3. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    4. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    5. Chang, C-L. & Hsieh, T-L. & McAleer, M.J., 2016. "How are VIX and Stock Index ETF Related?," Econometric Institute Research Papers EI2016-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Katsiampa, Paraskevi & Yarovaya, Larisa & Zięba, Damian, 2022. "High-frequency connectedness between Bitcoin and other top-traded crypto assets during the COVID-19 crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    7. Takashi Isogai, 2015. "An Empirical Study of the Dynamic Correlation of Japanese Stock Returns," Bank of Japan Working Paper Series 15-E-7, Bank of Japan.
    8. Pan, Zhiyuan & Wang, Yudong & Yang, Li, 2014. "Hedging crude oil using refined product: A regime switching asymmetric DCC approach," Energy Economics, Elsevier, vol. 46(C), pages 472-484.
    9. Michael mcAleer, 2017. "Stationarity and Invertibility of a Dynamic Correlation Matrix," Tinbergen Institute Discussion Papers 17-082/III, Tinbergen Institute.
    10. Chang, Chia-Lin & McAleer, Michael & Wang, Yanghuiting, 2018. "Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Energy, Elsevier, vol. 151(C), pages 984-997.
    11. Christian M. Hafner & Michael McAleer, 2014. "A One Line Derivation of DCC: Application of a Vector Random Coefficient Moving Average Process," Documentos de Trabajo del ICAE 2014-29, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    12. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity and (Non-) Asymptotic Properties of the Full BEKK Dynamic Conditional Covariance Model," JRFM, MDPI, vol. 12(2), pages 1-7, April.
    13. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2018. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1002-1018.
    14. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.
    15. Chia-Lin Chang & Chia-Ping Liu & Michael McAleer, 2016. "Volatility Spillovers for Spot, Futures, and ETF Prices in Energy and Agriculture," Tinbergen Institute Discussion Papers 16-046/III, Tinbergen Institute.
    16. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    17. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About DCC," Documentos de Trabajo del ICAE 2013-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    18. Hou, Yang (Greg) & Li, Steven, 2020. "Volatility and skewness spillover between stock index and stock index futures markets during a crash period: New evidence from China," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 166-188.
    19. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know about the Dynamic Conditional Correlation Representation," Econometrics, MDPI, vol. 1(1), pages 1-12, June.
    20. Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.

    More about this item

    Keywords

    Hedging; Covariances; Correlations; Existence; Mathematical regularity; Invertibility; Likelihood function; Statistical asymptotic properties; Caveats; Practical implementation.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucm:doicae:1917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Águeda González Abad (email available below). General contact details of provider: https://edirc.repec.org/data/feucmes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.