IDEAS home Printed from https://ideas.repec.org/p/kyo/wpaper/1108.html
   My bibliography  Save this paper

Portfolio selection from risk transfer mechanisms in a time of crisis for renewable energy markets

Author

Listed:
  • Yu-Ann Wang

    (Taiwan Research Institute, Taiwan)

  • Chia-Lin Chang

    (National Chung Hsing University, Taiwan)

Abstract

This study explores risk transmission in financial markets, focusing on investor hedging decisions. It examines risk movement between renewable and fossil fuel energy assets in energy ETFs during the Global Financial Crisis (GFC) and the COVID-19 pandemic. A novel test evaluates how an energy asset's volatility impacts the overall portfolio risk, offering insights for managing financial risk. The analysis covers three major renewable energy ETFs (solar, wind, and hydro) and three fossil fuel ETFs (oil, coal, and natural gas). During the COVID-19 crisis, effective combinations such as (solar, coal) and (wind, coal) are recommended for minimizing losses. Although not ideal for hedging solar-related risks, (solar, oil) is advantageous for oil-related shocks. The study found that combining solar with oil and wind with oil was effective in mitigating losses during the GFC and before COVID-19. In non-pandemic periods, combinations like (solar, oil) or (solar, coal) are valuable for risk management. This research highlights the interconnectedness of energy assets and provides actionable insights for investors and policymakers. Future research could examine other events, like the Russia-Ukraine war, impacting global energy markets.

Suggested Citation

  • Yu-Ann Wang & Chia-Lin Chang, 2024. "Portfolio selection from risk transfer mechanisms in a time of crisis for renewable energy markets," KIER Working Papers 1108, Kyoto University, Institute of Economic Research.
  • Handle: RePEc:kyo:wpaper:1108
    as

    Download full text from publisher

    File URL: https://www.kier.kyoto-u.ac.jp/wp/wp-content/uploads/2024/09/DP1108.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Managi, Shunsuke & Okimoto, Tatsuyoshi, 2013. "Does the price of oil interact with clean energy prices in the stock market?," Japan and the World Economy, Elsevier, vol. 27(C), pages 1-9.
    3. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity, and (Non-) Asymptotic Properties of the Dynamic Conditional Correlation (DCC) Model," JRFM, MDPI, vol. 12(2), pages 1-9, April.
    4. Troster, Victor & Shahbaz, Muhammad & Uddin, Gazi Salah, 2018. "Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis," Energy Economics, Elsevier, vol. 70(C), pages 440-452.
    5. Arkady Gevorkyan, 2017. "Renewable versus nonrenewable resources: an analysis of volatility in futures prices," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(1), pages 19-35, January.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    8. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity and (Non-) Asymptotic Properties of the Full BEKK Dynamic Conditional Covariance Model," JRFM, MDPI, vol. 12(2), pages 1-7, April.
    9. Chia-Lin Chang & Michael McAleer & Jiarong Tian, 2019. "Modeling and Testing Volatility Spillovers in Oil and Financial Markets for the USA, the UK, and China," Energies, MDPI, vol. 12(8), pages 1-24, April.
    10. Syed Kumail Abbas Rizvi & Bushra Naqvi & Nawazish Mirza, 2022. "Is green investment different from grey? Return and volatility spillovers between green and grey energy ETFs," Annals of Operations Research, Springer, vol. 313(1), pages 495-524, June.
    11. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    12. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    13. Michael McAleer & Suhejla Hoti & Felix Chan, 2009. "Structure and Asymptotic Theory for Multivariate Asymmetric Conditional Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 422-440.
    14. Gevorkyan, Arkady, 2017. "Renewable versus nonrenewable resources: an analysis of volatility in futures prices," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(1), January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Lin Chang & Michael McAleer & Yu-Ann Wang, 2018. "Latent Volatility Granger Causality and Spillovers in Renewable Energy and Crude Oil ETFs," Documentos de Trabajo del ICAE 2018-15, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    2. Chia-Lin Chang & Michael McAleer & Jiarong Tian, 2019. "Modeling and Testing Volatility Spillovers in Oil and Financial Markets for the USA, the UK, and China," Energies, MDPI, vol. 12(8), pages 1-24, April.
    3. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    4. Arthur J. Lin & Hai-Yen Chang, 2020. "Volatility Transmission from Equity, Bulk Shipping, and Commodity Markets to Oil ETF and Energy Fund—A GARCH-MIDAS Model," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    5. Abdul Hakim & Michael McAleer, 2009. "VaR Forecasts and Dynamic Conditional Correlations for Spot and Futures Returns on Stocks and Bonds," CARF F-Series CARF-F-178, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    6. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2018. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1002-1018.
    7. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    8. Chia-Lin Chang & Michael McAleer & Yu-Ann Wang, 2016. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn," Documentos de Trabajo del ICAE 2016-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    9. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.
    10. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity, and (Non-) Asymptotic Properties of the Dynamic Conditional Correlation (DCC) Model," JRFM, MDPI, vol. 12(2), pages 1-9, April.
    11. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    12. Khalfaoui, R & Boutahar, M, 2012. "Portfolio risk evaluation: An approach based on dynamic conditional correlations models and wavelet multiresolution analysis," MPRA Paper 41624, University Library of Munich, Germany.
    13. Zolfaghari, Mehdi & Ghoddusi, Hamed & Faghihian, Fatemeh, 2020. "Volatility spillovers for energy prices: A diagonal BEKK approach," Energy Economics, Elsevier, vol. 92(C).
    14. Chia-Lin Chang & Michael McAleer & Chien-Hsun Wang, 2017. "An Econometric Analysis of ETF and ETF Futures in Financial and Energy Markets Using Generated Regressors," IJFS, MDPI, vol. 6(1), pages 1-24, December.
    15. Hsu, Shu-Han & Sheu, Chwen & Yoon, Jiho, 2021. "Risk spillovers between cryptocurrencies and traditional currencies and gold under different global economic conditions," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    16. Chia-Lin Chang & Chia-Ping Liu & Michael McAleer, 2016. "Volatility Spillovers for Spot, Futures, and ETF Prices in Energy and Agriculture," Tinbergen Institute Discussion Papers 16-046/III, Tinbergen Institute.
    17. Manabu Asai & Michael McAleer, 2009. "Dynamic Conditional Correlations for Asymmetric Processes," CARF F-Series CARF-F-168, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    18. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    19. Hakim, Abdul & McAleer, Michael, 2009. "Forecasting conditional correlations in stock, bond and foreign exchange markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2830-2846.
    20. Yudong Wang & Li Liu, 2016. "Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging," Empirical Economics, Springer, vol. 50(4), pages 1481-1509, June.

    More about this item

    Keywords

    Renewable energy; Volatility spillover; Risk Transfer; GFC; COVID-19;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G01 - Financial Economics - - General - - - Financial Crises
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kyo:wpaper:1108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Makoto Watanabe (email available below). General contact details of provider: https://edirc.repec.org/data/iekyojp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.