IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/77759.html
   My bibliography  Save this paper

Asymmetry and Leverage in Conditional Volatility Models

Author

Listed:
  • McAleer, M.J.

Abstract

__Abstract__ The three most popular univariate conditional volatility models are the generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986), the GJR (or threshold GARCH) model of Glosten, Jagannathan and Runkle (1992), and the exponential GARCH (or EGARCH) model of Nelson (1990, 1991). The underlying stochastic specification to obtain GARCH was demonstrated by Tsay (1987), and that of EGARCH was shown recently in McAleer and Hafner (2014). These models are important in estimating and forecasting volatility, as well as capturing asymmetry, which is the different effects on conditional volatility of positive and negative effects of equal magnitude, and leverage, which is the negative correlation between returns shocks and subsequent shocks to volatility. As there seems to be some confusion in the literature between asymmetry and leverage, as well as which asymmetric models are purported to be able to capture leverage, the purpose of the paper is two-fold, namely: (1) to derive the GJR model from a random coefficient autoregressive process, with appropriate regularity conditions; and (2) to show that leverage is not possible in these univariate conditional volatility models.

Suggested Citation

  • McAleer, M.J., 2014. "Asymmetry and Leverage in Conditional Volatility Models," Econometric Institute Research Papers 77759, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:77759
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/77759/EI-2014-32.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Michael McAleer & Christian M. Hafner, 2014. "A One Line Derivation of EGARCH," Econometrics, MDPI, vol. 2(2), pages 1-6, June.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    2. Guillaume Gaetan Martinet & Michael McAleer, 2018. "On the invertibility of EGARCH(p, q)," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 824-849, September.
    3. Chang, Chia-Lin & McAleer, Michael, 2017. "The correct regularity condition and interpretation of asymmetry in EGARCH," Economics Letters, Elsevier, vol. 161(C), pages 52-55.
    4. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2018. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1002-1018.
    5. Chang, Chia-Lin & McAleer, Michael, 2019. "The fiction of full BEKK: Pricing fossil fuels and carbon emissions," Finance Research Letters, Elsevier, vol. 28(C), pages 11-19.
    6. Chia-Lin Chang & Michael McAleer, 2017. "The Fiction of Full BEKK," Documentos de Trabajo del ICAE 2017-06, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    7. David E. Allen & Michael McAleer, 2018. "Theoretical and Empirical Differences between Diagonal and Full BEKK for Risk Management," Energies, MDPI, vol. 11(7), pages 1-19, June.
    8. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    9. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    10. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    11. Michael McAleer & Christian M. Hafner, 2014. "A One Line Derivation of EGARCH," Econometrics, MDPI, vol. 2(2), pages 1-6, June.
    12. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    13. Nelson, Daniel B. & Foster, Dean P., 1995. "Filtering and forecasting with misspecified ARCH models II : Making the right forecast with the wrong model," Journal of Econometrics, Elsevier, vol. 67(2), pages 303-335, June.
    14. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    15. Asai, Manabu & McAleer, Michael & Medeiros, Marcelo C., 2012. "Modelling and forecasting noisy realized volatility," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 217-230, January.
    16. Brooks, Robert D. & Faff, Robert W. & McKenzie, Michael D. & Mitchell, Heather, 2000. "A multi-country study of power ARCH models and national stock market returns," Journal of International Money and Finance, Elsevier, vol. 19(3), pages 377-397, June.
    17. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," JRFM, MDPI, vol. 11(4), pages 1-25, September.
    18. Shaw, Charles, 2018. "Conditional heteroskedasticity in crypto-asset returns," MPRA Paper 90437, University Library of Munich, Germany.
    19. Chang, Chia-Lin & Hsu, Hui-Kuang & McAleer, Michael, 2014. "The impact of China on stock returns and volatility in the Taiwan tourism industry," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 381-401.
    20. Vanshu Mahajan & Sunil Thakan & Aashish Malik, 2022. "Modeling and Forecasting the Volatility of NIFTY 50 Using GARCH and RNN Models," Economies, MDPI, vol. 10(5), pages 1-20, April.

    More about this item

    Keywords

    Conditional volatility models; random coefficient autoregressive processes; random coefficient complex nonlinear moving average process; asymmetry; leverage;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:77759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.