IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v117y2013icp246-256.html
   My bibliography  Save this article

Homogeneous distributions—And a spectral representation of classical mean values and stable tail dependence functions

Author

Listed:
  • Ressel, Paul

Abstract

Homogeneous distributions on R+d and on R¯+d∖︀{∞¯d} are shown to be Bauer simplices when normalized. This is used to provide spectral representations for the classical power mean values Mt(x) which turn out to be unique mixtures of the functions x⟼mini≤d(aixi) for t≤1 (with some gaps depending on the dimension d), resp. x⟼maxi≤d(aixi) for t≥1 (without gaps), where ai≥0.

Suggested Citation

  • Ressel, Paul, 2013. "Homogeneous distributions—And a spectral representation of classical mean values and stable tail dependence functions," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 246-256.
  • Handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:246-256
    DOI: 10.1016/j.jmva.2013.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13000274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ressel, Paul, 2011. "Monotonicity properties of multivariate distribution and survival functions -- With an application to Lévy-frailty copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 393-404, March.
    2. Genest, Christian & Rivest, Louis-Paul, 1989. "A characterization of gumbel's family of extreme value distributions," Statistics & Probability Letters, Elsevier, vol. 8(3), pages 207-211, August.
    3. Ressel, Paul, 2012. "Functions operating on multivariate distribution and survival functions—With applications to classical mean-values and to copulas," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 55-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ressel Paul, 2019. "Copulas, stable tail dependence functions, and multivariate monotonicity," Dependence Modeling, De Gruyter, vol. 7(1), pages 247-258, January.
    2. Ressel Paul, 2022. "Stable tail dependence functions – some basic properties," Dependence Modeling, De Gruyter, vol. 10(1), pages 225-235, January.
    3. Ressel Paul, 2018. "A multivariate version of Williamson’s theorem, ℓ-symmetric survival functions, and generalized Archimedean copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 356-368, December.
    4. Ressel Paul, 2023. "Functions operating on several multivariate distribution functions," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-11, January.
    5. repec:hum:wpaper:sfb649dp2009-014 is not listed on IDEAS
    6. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    7. Mainik Georg & Rüschendorf Ludger, 2012. "Ordering of multivariate risk models with respect to extreme portfolio losses," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 73-106, March.
    8. Mazo, Gildas & Girard, Stéphane & Forbes, Florence, 2015. "A class of multivariate copulas based on products of bivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 363-376.
    9. Matthieu Garcin & Maxime L. D. Nicolas, 2021. "Nonparametric estimator of the tail dependence coefficient: balancing bias and variance," Papers 2111.11128, arXiv.org, revised Jul 2023.
    10. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    11. Tankov, Peter, 2016. "Tails of weakly dependent random vectors," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 73-86.
    12. Shenkman, Natalia, 2017. "A natural parametrization of multivariate distributions with limited memory," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 234-251.
    13. Okhrin Ostap & Okhrin Yarema & Schmid Wolfgang, 2013. "Properties of hierarchical Archimedean copulas," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 21-54, March.
    14. Segers, J.J.J., 2004. "Non-Parametric Inference for Bivariate Extreme-Value Copulas," Discussion Paper 2004-91, Tilburg University, Center for Economic Research.
    15. Dutfoy Anne & Parey Sylvie & Roche Nicolas, 2014. "Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-19, June.
    16. Ressel, Paul, 2011. "A revision of Kimberling's results -- With an application to max-infinite divisibility of some Archimedean copulas," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 207-211, February.
    17. Hofert, Marius & Huser, Raphaël & Prasad, Avinash, 2018. "Hierarchical Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 195-211.
    18. Yongzhao Chen & Ka Chun Cheung & Sheung Chi Phillip Yam & Fei Lung Yuen & Jia Zeng, 2023. "On the Diversification Effect in Solvency II for Extremely Dependent Risks," Risks, MDPI, vol. 11(8), pages 1-22, August.
    19. Ressel, Paul, 2012. "Functions operating on multivariate distribution and survival functions—With applications to classical mean-values and to copulas," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 55-67.
    20. repec:hum:wpaper:sfb649dp2010-022 is not listed on IDEAS
    21. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.
    22. Li, Haijun, 2009. "Orthant tail dependence of multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 243-256, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:246-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.