IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v32y2021i2ne2656.html
   My bibliography  Save this article

Simultaneous autoregressive models for spatial extremes

Author

Listed:
  • Miranda J. Fix
  • Daniel S. Cooley
  • Emeric Thibaud

Abstract

Motivated by the widespread use of large gridded data sets in the atmospheric sciences, we propose a new model for extremes of areal data that is inspired by the simultaneous autoregressive (SAR) model in classical spatial statistics. Our extreme SAR model extends recent work on transformed‐linear operations applied to regularly varying random vectors, and is unique among extremes models in being directly analogous to a classical linear model. An additional appeal is its simplicity; given a proximity matrix W, spatial dependence is described by a single parameter ρ. We develop an estimation method that minimizes the discrepancy between the tail pairwise dependence matrix (TPDM) for the fitted model and the estimated TPDM. Applying this method to simulated data demonstrates that it is able to produce good estimates of extremal spatial dependence even in the case of model misspecification, and additionally produces reasonable estimates of uncertainty. We also apply the method to gridded precipitation observations for a study region over northeast Colorado, and find that a single‐parameter extreme SAR model paired with a neighborhood structure which accounts for longer range dependence effectively models spatial dependence in these data.

Suggested Citation

  • Miranda J. Fix & Daniel S. Cooley & Emeric Thibaud, 2021. "Simultaneous autoregressive models for spatial extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
  • Handle: RePEc:wly:envmet:v:32:y:2021:i:2:n:e2656
    DOI: 10.1002/env.2656
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2656
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brook T. Russell & Daniel S. Cooley & William C. Porter & Colette L. Heald, 2016. "Modeling the spatial behavior of the meteorological drivers' effects on extreme ozone," Environmetrics, John Wiley & Sons, Ltd., vol. 27(6), pages 334-344, September.
    2. Arnab Hazra & Brian J. Reich & Ana‐Maria Staicu, 2020. "A multivariate spatial skew‐t process for joint modeling of extreme precipitation indexes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(3), May.
    3. John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016. "An M-estimator of spatial tail dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
    4. Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Other publications TiSEM a3e7350b-4773-4bd8-9c3c-6, Tilburg University, School of Economics and Management.
    5. Cooley, Daniel & Nychka, Douglas & Naveau, Philippe, 2007. "Bayesian Spatial Modeling of Extreme Precipitation Return Levels," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 824-840, September.
    6. Paul Sharkey & Hugo C. Winter, 2019. "A Bayesian spatial hierarchical model for extreme precipitation in Great Britain," Environmetrics, John Wiley & Sons, Ltd., vol. 30(1), February.
    7. John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016. "An M-estimator of spatial tail dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
    8. Harry H. Kelejian & Dennis P. Robinson, 1995. "Spatial Correlation: A Suggested Alternative to the Autoregressive Model," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax (ed.), New Directions in Spatial Econometrics, chapter 3, pages 75-95, Springer.
    9. Fougères, Anne-Laure & Mercadier, Cécile & Nolan, John P., 2013. "Dense classes of multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 109-129.
    10. R. Shooter & E. Ross & J. Tawn & P. Jonathan, 2019. "On spatial conditional extremes for ocean storm severity," Environmetrics, John Wiley & Sons, Ltd., vol. 30(6), September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Getayeneh Antehunegn Tesema & Zemenu Tadesse Tessema & Stephane Heritier & Rob G. Stirling & Arul Earnest, 2023. "A Systematic Review of Joint Spatial and Spatiotemporal Models in Health Research," IJERPH, MDPI, vol. 20(7), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klüppelberg, Claudia & Krali, Mario, 2021. "Estimating an extreme Bayesian network via scalings," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    2. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    3. Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    6. Robert, Christian Y., 2022. "Testing for changes in the tail behavior of Brown–Resnick Pareto processes," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 312-368.
    7. Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Other publications TiSEM a3e7350b-4773-4bd8-9c3c-6, Tilburg University, School of Economics and Management.
    8. Jonathan Jalbert & Christian Genest & Luc Perreault, 2022. "Interpolation of Precipitation Extremes on a Large Domain Toward IDF Curve Construction at Unmonitored Locations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 461-486, September.
    9. Rootzen, Holger & Segers, Johan & Wadsworth, Jenny, 2016. "Multivariate peaks over thresholds models," LIDAM Discussion Papers ISBA 2016018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Jordan Richards & Jennifer L. Wadsworth, 2021. "Spatial deformation for nonstationary extremal dependence," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    11. Federica Stolf & Antonio Canale, 2023. "A hierarchical Bayesian non‐asymptotic extreme value model for spatial data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    12. Kiriliouk, Anna & Segers, Johan & Warchol, Michal, 2014. "Nonparametric estimation of extremal dependence," LIDAM Discussion Papers ISBA 2014044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation In Extreme Value Regression Models Of Hedge Fund Tail Risks," Working Papers hal-04090916, HAL.
    14. Kiriliouk, Anna, 2017. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models," LIDAM Discussion Papers ISBA 2017027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Samuel A. Morris & Brian J. Reich & Emeric Thibaud, 2019. "Exploration and Inference in Spatial Extremes Using Empirical Basis Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 555-572, December.
    16. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation in Extreme Value Regression Models of Hedge Fund Tail Risks," Papers 2304.06950, arXiv.org.
    17. Baltagi, Badi H., 2006. "Random Effects And Spatial Autocorrelation With Equal Weights," Econometric Theory, Cambridge University Press, vol. 22(5), pages 973-984, October.
    18. Kristofer Månsson & Ghazi Shukur & Pär Sjölander, 2013. "Testing for panel unit roots in the presence of spatial dependency," Applied Economics, Taylor & Francis Journals, vol. 45(29), pages 4152-4159, October.
    19. Luisa Corrado & Bernard Fingleton, 2012. "Where Is The Economics In Spatial Econometrics?," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 210-239, May.
    20. Guanzhou Wei & Xiao Liu & Russell Barton, 2024. "An extended PDE‐based statistical spatio‐temporal model that suppresses the Gibbs phenomenon," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:32:y:2021:i:2:n:e2656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.