IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20130055.html
   My bibliography  Save this paper

Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox

Author

Listed:
  • Roberto Casarin

    (University Ca' Foscari of Venice and GRETA)

  • Stefano Grassi

    (CREATES, Aarhus University)

  • Francesco Ravazzolo

    (Norges Bank, and BI Norwegian Business School)

  • Herman K. van Dijk

    (Erasmus University Rotterdam, and VU University Amsterdam)

Abstract

This paper presents the Matlab package DeCo (Density Combination) which is based on the paper by Billio et al. (2013) where a constructive Bayesian approach is presented for combining predictive densities originating from different models or other sources of information. The combination weights are time-varying and may depend on past predictive forecasting performances and other learning mechanisms. The core algorithm is the function DeCo which applies banks of parallel Sequential Monte Carlo algorithms to filter the time-varying combination weights. The DeCo procedure has been implemented both for standard CPU computing and for Graphical Process Unit (GPU) parallel computing. For the GPU implementation we use the Matlab parallel computing toolbox and show how to use General Purposes GPU computing almost effortless. This GPU implementation comes with a speed up of the execution time up to seventy times compared to a standard CPU Matlab implementation on a multicore CPU. We show the use of the package and the computational gain of the GPU version, through some simulation experiments and empirical applications.

Suggested Citation

  • Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox," Tinbergen Institute Discussion Papers 13-055/III, Tinbergen Institute, revised 16 Jan 2015.
  • Handle: RePEc:tin:wpaper:20130055
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/13055.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    2. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
    3. John Geweke, "undated". "Posterior Simulators in Econometrics," Computing in Economics and Finance 1996 _019, Society for Computational Economics.
    4. Terui, Nobuhiko & van Dijk, Herman K., 2002. "Combined forecasts from linear and nonlinear time series models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
    5. Dimitris Korobilis, 2013. "Var Forecasting Using Bayesian Variable Selection," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
    6. Mathur, Sudhanshu & Morozov, Sergei, 2009. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," MPRA Paper 16721, University Library of Munich, Germany.
    7. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    8. Nicolas Chopin, 2002. "Central Limit Theorem for Sequential Monte Carlo Methods and its Applications to Bayesian Inference," Working Papers 2002-44, Center for Research in Economics and Statistics.
    9. James P. LeSage, 1998. "ECONOMETRICS: MATLAB toolbox of econometrics functions," Statistical Software Components T961401, Boston College Department of Economics.
    10. Casarin, Roberto & Chang, Chia-Lin & Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio, 2013. "Risk management of risk under the Basel Accord: A Bayesian approach to forecasting Value-at-Risk of VIX futures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 183-204.
    11. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    12. Michael Creel & William Goffe, 2008. "Multi-core CPUs, Clusters, and Grid Computing: A Tutorial," Computational Economics, Springer;Society for Computational Economics, vol. 32(4), pages 353-382, November.
    13. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    14. Aldrich, Eric M. & Fernández-Villaverde, Jesús & Ronald Gallant, A. & Rubio-Ramírez, Juan F., 2011. "Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(3), pages 386-393, March.
    15. Garland Durham & John Geweke, 2014. "Adaptive Sequential Posterior Simulators for Massively Parallel Computing Environments," Advances in Econometrics, in: Bayesian Model Comparison, volume 34, pages 1-44, Emerald Group Publishing Limited.
    16. Matt Dziubinski & Stefano Grassi, 2014. "Heterogeneous Computing in Economics: A Simplified Approach," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 485-495, April.
    17. Swann, Christopher A, 2002. "Maximum Likelihood Estimation Using Parallel Computing: An Introduction to MPI," Computational Economics, Springer;Society for Computational Economics, vol. 19(2), pages 145-178, April.
    18. Morozov, Sergei & Mathur, Sudhanshu, 2009. "Massively parallel computation using graphics processors with application to optimal experimentation in dynamic control," MPRA Paper 30298, University Library of Munich, Germany, revised 04 Apr 2011.
    19. Sergei Morozov & Sudhanshu Mathur, 2012. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 151-182, August.
    20. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Papers (Old Series) 1218, Federal Reserve Bank of Cleveland.
    21. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    22. Roberto Casarin & Jean-Michel Marin, 2007. "Online data processing: comparison of Bayesian regularized particle filters," Working Papers 0703, University of Brescia, Department of Economics.
    23. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    24. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    25. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    26. Michael Creel, 2005. "User-Friendly Parallel Computations with Econometric Examples," Computational Economics, Springer;Society for Computational Economics, vol. 26(2), pages 107-128, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Čapek, Jan & Crespo Cuaresma, Jesús & Hauzenberger, Niko & Reichel, Vlastimil, 2023. "Macroeconomic forecasting in the euro area using predictive combinations of DSGE models," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1820-1838.
    2. Bognanni, Mark & Zito, John, 2020. "Sequential Bayesian inference for vector autoregressions with stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    3. Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022. "Optimal probabilistic forecasts: When do they work?," International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
    4. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    5. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    6. Knut Are Aastveit & Jamie Cross & Herman K. Djik, 2021. "Quantifying time-varying forecast uncertainty and risk for the real price of oil," Working Papers No 03/2021, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    7. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2020. "A Bayesian Dynamic Compositional Model for Large Density Combinations in Finance," Working Paper series 20-27, Rimini Centre for Economic Analysis.
    8. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    9. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    10. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    11. Roberto Casarin & Giulia Mantoan & Francesco Ravazzolo, 2016. "Bayesian Calibration of Generalized Pools of Predictive Distributions," Econometrics, MDPI, vol. 4(1), pages 1-24, March.
    12. Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2019. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Working Papers No 01/2019, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    13. Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
    14. Nalan Basturk & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2016. "Time-varying Combinations of Bayesian Dynamic Models and Equity Momentum Strategies," Tinbergen Institute Discussion Papers 16-099/III, Tinbergen Institute.
    15. Yusupova, Alisa & Pavlidis, Nicos G. & Pavlidis, Efthymios G., 2023. "Dynamic linear models with adaptive discounting," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1925-1944.
    16. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    17. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    18. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2019. "Forecast density combinations with dynamic learning for large data sets in economics and finance," Working Paper 2019/7, Norges Bank.
    19. Knut Are Aastveit & Jamie L. Cross & Herman K. van Dijk, 2023. "Quantifying Time-Varying Forecast Uncertainty and Risk for the Real Price of Oil," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 523-537, April.
    20. Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
    21. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    22. McAlinn, Kenichiro & West, Mike, 2019. "Dynamic Bayesian predictive synthesis in time series forecasting," Journal of Econometrics, Elsevier, vol. 210(1), pages 155-169.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
    2. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    3. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    4. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    5. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    6. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    7. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2023. "A flexible predictive density combination for large financial data sets in regular and crisis periods," Journal of Econometrics, Elsevier, vol. 237(2).
    8. Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016. "Dynamic prediction pools: An investigation of financial frictions and forecasting performance," Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
    9. Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017. "Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
    10. Matt Dziubinski & Stefano Grassi, 2014. "Heterogeneous Computing in Economics: A Simplified Approach," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 485-495, April.
    11. Yongyang Cai & Kenneth Judd & Greg Thain & Stephen Wright, 2015. "Solving Dynamic Programming Problems on a Computational Grid," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 261-284, February.
    12. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    13. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Papers No 3/2014, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    14. Lilia Maliar, 2015. "Assessing gains from parallel computation on a supercomputer," Economics Bulletin, AccessEcon, vol. 35(1), pages 159-167.
    15. Michael S. Smith & Shaun P. Vahey, 2016. "Asymmetric Forecast Densities for U.S. Macroeconomic Variables from a Gaussian Copula Model of Cross-Sectional and Serial Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 416-434, July.
    16. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    17. Michael C. Hatcher & Eric M. Scheffel, 2016. "Solving the Incomplete Markets Model in Parallel Using GPU Computing and the Krusell–Smith Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 569-591, December.
    18. Kapetanios, G. & Mitchell, J. & Price, S. & Fawcett, N., 2015. "Generalised density forecast combinations," Journal of Econometrics, Elsevier, vol. 188(1), pages 150-165.
    19. Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
    20. Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023. "On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates," Journal of Econometrics, Elsevier, vol. 237(2).

    More about this item

    Keywords

    Density Forecast Combination; Sequential Monte Carlo; Parallel Computing; GPU; Matlab;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20130055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.