IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v48y2016i4d10.1007_s10614-015-9537-0.html
   My bibliography  Save this article

Solving the Incomplete Markets Model in Parallel Using GPU Computing and the Krusell–Smith Algorithm

Author

Listed:
  • Michael C. Hatcher

    (University of Southampton)

  • Eric M. Scheffel

    (Nottingham University Business School China)

Abstract

This paper demonstrates the potential of graphics processing units in solving the incomplete markets model in parallel using the Krusell–Smith algorithm. We illustrate the power of this approach using the same exercise as in Den Haan et al. (J Econ Dyn Control 34:1–3, 2010). We document a speed gain which increases sharply with the number of agents. To reduce entry barriers, we explain our methodology and provide some example algorithms.

Suggested Citation

  • Michael C. Hatcher & Eric M. Scheffel, 2016. "Solving the Incomplete Markets Model in Parallel Using GPU Computing and the Krusell–Smith Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 569-591, December.
  • Handle: RePEc:kap:compec:v:48:y:2016:i:4:d:10.1007_s10614-015-9537-0
    DOI: 10.1007/s10614-015-9537-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-015-9537-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-015-9537-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giusto, Andrea, 2014. "Adaptive learning and distributional dynamics in an incomplete markets model," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 317-333.
    2. Den Haan, Wouter J. & Rendahl, Pontus, 2010. "Solving the incomplete markets model with aggregate uncertainty using explicit aggregation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 69-78, January.
    3. Mathur, Sudhanshu & Morozov, Sergei, 2009. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," MPRA Paper 16721, University Library of Munich, Germany.
    4. Sergei Morozov & Sudhanshu Mathur, 2012. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 151-182, August.
    5. Maliar, Lilia & Maliar, Serguei & Valli, Fernando, 2010. "Solving the incomplete markets model with aggregate uncertainty using the Krusell-Smith algorithm," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 42-49, January.
    6. Michael Creel & William Goffe, 2008. "Multi-core CPUs, Clusters, and Grid Computing: A Tutorial," Computational Economics, Springer;Society for Computational Economics, vol. 32(4), pages 353-382, November.
    7. Algan, Yann & Allais, Olivier & Den Haan, Wouter J., 2010. "Solving the incomplete markets model with aggregate uncertainty using parameterized cross-sectional distributions," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 59-68, January.
    8. Horvath, Michal, 2012. "Computational accuracy and distributional analysis in models with incomplete markets and aggregate uncertainty," Economics Letters, Elsevier, vol. 117(1), pages 276-279.
    9. Aldrich, Eric M. & Fernández-Villaverde, Jesús & Ronald Gallant, A. & Rubio-Ramírez, Juan F., 2011. "Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(3), pages 386-393, March.
    10. Den Haan, Wouter J., 2010. "Comparison of solutions to the incomplete markets model with aggregate uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 4-27, January.
    11. repec:hal:spmain:info:hdl:2441/72lkhuq5cm8hqrn860asm92bvs is not listed on IDEAS
    12. Matt Dziubinski & Stefano Grassi, 2014. "Heterogeneous Computing in Economics: A Simplified Approach," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 485-495, April.
    13. Reiter, Michael, 2010. "Solving the incomplete markets model with aggregate uncertainty by backward induction," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 28-35, January.
    14. Den Haan, Wouter J. & Judd, Kenneth L. & Juillard, Michel, 2010. "Computational suite of models with heterogeneous agents: Incomplete markets and aggregate uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 1-3, January.
    15. Per Krusell & Anthony A. Smith & Jr., 1998. "Income and Wealth Heterogeneity in the Macroeconomy," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 867-896, October.
    16. Aldrich, EM, 2014. "GPU Computing in Economics," Santa Cruz Department of Economics, Working Paper Series qt8p12748g, Department of Economics, UC Santa Cruz.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivo Bakota, 2023. "Market Clearing and Krusell-Smith Algorithm in an Economy with Multiple Assets," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1007-1045, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takeki Sunakawa, 2020. "Applying the Explicit Aggregation Algorithm to Heterogeneous Macro Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 845-874, March.
    2. Chipeniuk, Karsten O. & Katz, Nets Hawk & Walker, Todd B., 2022. "Households, auctioneers, and aggregation," European Economic Review, Elsevier, vol. 141(C).
    3. Jesús Fernández‐Villaverde & Samuel Hurtado & Galo Nuño, 2023. "Financial Frictions and the Wealth Distribution," Econometrica, Econometric Society, vol. 91(3), pages 869-901, May.
    4. Marco Cozzi, 2015. "The Krusell–Smith Algorithm: Are Self-Fulfilling Equilibria Likely?," Computational Economics, Springer;Society for Computational Economics, vol. 46(4), pages 653-670, December.
    5. Grey Gordon, 2020. "Computing Dynamic Heterogeneous-Agent Economies: Tracking the Distribution," Economic Quarterly, Federal Reserve Bank of Richmond, issue 2Q, pages 61-95.
    6. Karsten O. Chipeniuk, 2020. "Optimal Grid Selection for the Numerical Solution of Dynamic Stochastic Optimization Problems," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 883-928, December.
    7. Emoto, Masakazu & Sunakawa, Takeki, 2021. "Applying the explicit aggregation algorithm to heterogeneous agent models in continuous time," Economics Letters, Elsevier, vol. 206(C).
    8. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    9. Nalan Baştürk & Stefano Grassi & Lennart Hoogerheide & Herman K. Van Dijk, 2016. "Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM," Econometrics, MDPI, vol. 4(1), pages 1-20, March.
    10. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2015. "Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i03).
    11. Karsten O. Chipeniuk & Nets Hawk Katz & Todd Bruce Walker, 2022. "Households, Auctioneers, and Aggregation," CAEPR Working Papers 2022-005 Classification-E, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    12. Horvath, Michal, 2012. "Computational accuracy and distributional analysis in models with incomplete markets and aggregate uncertainty," Economics Letters, Elsevier, vol. 117(1), pages 276-279.
    13. Vasco M. Carvalho & Basile Grassi, 2019. "Large Firm Dynamics and the Business Cycle," American Economic Review, American Economic Association, vol. 109(4), pages 1375-1425, April.
    14. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2020. "A Bayesian Dynamic Compositional Model for Large Density Combinations in Finance," Working Paper series 20-27, Rimini Centre for Economic Analysis.
    15. Hull, Isaiah, 2015. "Approximate dynamic programming with post-decision states as a solution method for dynamic economic models," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 57-70.
    16. Lilia Maliar, 2015. "Assessing gains from parallel computation on a supercomputer," Economics Bulletin, AccessEcon, vol. 35(1), pages 159-167.
    17. Matt Dziubinski & Stefano Grassi, 2014. "Heterogeneous Computing in Economics: A Simplified Approach," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 485-495, April.
    18. Den Haan, Wouter J., 2010. "Comparison of solutions to the incomplete markets model with aggregate uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 4-27, January.
    19. Muffasir Badshah & Paul Beaumont & Anuj Srivastava, 2013. "Computing Equilibrium Wealth Distributions in Models with Heterogeneous-Agents, Incomplete Markets and Idiosyncratic Risk," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 171-193, February.
    20. Tobias Grasl, 2013. "Solving Incomplete Markets Models by Derivative Aggregation," Birkbeck Working Papers in Economics and Finance 1302, Birkbeck, Department of Economics, Mathematics & Statistics.

    More about this item

    Keywords

    GPU computing; Heterogeneous agents; Incomplete markets; Interpolation; Krusell–Smith algorithm;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:48:y:2016:i:4:d:10.1007_s10614-015-9537-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.