IDEAS home Printed from https://ideas.repec.org/a/spr/jospat/v4y2023i1d10.1007_s43071-023-00034-1.html
   My bibliography  Save this article

Heterogeneous spatial models in R: spatial regimes models

Author

Listed:
  • Gianfranco Piras

    (The Catholic University of America
    University of Chieti – Pescara)

  • Mauricio Sarrias

    (Universidad de Talca)

Abstract

This paper presents the progress made so far in the development of the R package hspm. The package hspm aims at implementing a variety of models and methods to control for heterogeneity in spatial models. Spatial heterogeneity can be specified in different ways, ranging from exogenous (or endogenous) spatial regimes models, to models with coefficients that potentially vary for each observations (i.e., continuous heterogeneity). We focus on a few R functions that allow for the estimation of a general spatial regimes model, as well as all of the nested specifications deriving from it. The models are estimated by instrumental variables and generalized method of moments techniques.

Suggested Citation

  • Gianfranco Piras & Mauricio Sarrias, 2023. "Heterogeneous spatial models in R: spatial regimes models," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-32, December.
  • Handle: RePEc:spr:jospat:v:4:y:2023:i:1:d:10.1007_s43071-023-00034-1
    DOI: 10.1007/s43071-023-00034-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43071-023-00034-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43071-023-00034-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    2. LeSage, James P. & Chih, Yao-Yu, 2018. "A Bayesian spatial panel model with heterogeneous coefficients," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 58-73.
    3. Loring J. Thomas & Peng Huang & Fan Yin & Xiaoshuang Iris Luo & Zack W. Almquist & John R. Hipp & Carter T. Butts, 2020. "Spatial heterogeneity can lead to substantial local variations in COVID-19 timing and severity," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(39), pages 24180-24187, September.
    4. Gollini, Isabella & Lu, Binbin & Charlton, Martin & Brunsdon, Christopher & Harris, Paul, 2015. "GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i17).
    5. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    6. Finley, Andrew O. & Banerjee, Sudipto & Gelfand, Alan E., 2015. "spBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i13).
    7. Piras, Gianfranco, 2010. "sphet: Spatial Models with Heteroskedastic Innovations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i01).
    8. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    9. Jean-Pierre Huiban & Cécile Détang-Dessendre & Francis Aubert, 2004. "Urban versus Rural Firms: Is there a Spatial Heterogeneity of Labour Demand?," Environment and Planning A, , vol. 36(11), pages 2033-2045, November.
    10. Harry Kelejian & Gianfranco Piras, 2020. "Spillover effects in spatial models: Generalizations and extensions," Journal of Regional Science, Wiley Blackwell, vol. 60(3), pages 425-442, June.
    11. Simonetta Longhi & Peter Nijkamp, 2005. "Forecasting Regional Labour Market Developments Under Spatial Heterogeneity and Spatial Autocorrelation," Tinbergen Institute Discussion Papers 05-041/3, Tinbergen Institute.
    12. Millo, Giovanni & Piras, Gianfranco, 2012. "splm: Spatial Panel Data Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i01).
    13. Sergio J. Rey & Mark V. Janikas, 2005. "Regional convergence, inequality, and space," Journal of Economic Geography, Oxford University Press, vol. 5(2), pages 155-176, April.
    14. Finley, Andrew O. & Banerjee, Sudipto & Carlin, Bradley P., 2007. "spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i04).
    15. Chen, Jia & Shin, Yongcheol & Zheng, Chaowen, 2022. "Estimation and inference in heterogeneous spatial panels with a multifactor error structure," Journal of Econometrics, Elsevier, vol. 229(1), pages 55-79.
    16. Ramajo, Julián & Márquez, Miguel A. & Hewings, Geoffrey J.D. & Salinas, María M., 2008. "Spatial heterogeneity and interregional spillovers in the European Union: Do cohesion policies encourage convergence across regions?," European Economic Review, Elsevier, vol. 52(3), pages 551-567, April.
    17. Irani Arraiz & David M. Drukker & Harry H. Kelejian & Ingmar R. Prucha, 2010. "A Spatial Cliff‐Ord‐Type Model With Heteroskedastic Innovations: Small And Large Sample Results," Journal of Regional Science, Wiley Blackwell, vol. 50(2), pages 592-614, May.
    18. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    19. repec:rre:publsh:v:37:y:2007:i:1:p:5-27 is not listed on IDEAS
    20. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    21. Patricia C. Melo & Daniel J. Graham & Robert B. Noland, 2012. "The effect of labour market spatial structure on commuting in England and Wales ‡," Journal of Economic Geography, Oxford University Press, vol. 12(3), pages 717-737, May.
    22. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    2. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    3. Álvarez, Inmaculada C. & Barbero, Javier & Zofío, José L., 2017. "A Panel Data Toolbox for MATLAB," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i06).
    4. repec:rri:wpaper:201301 is not listed on IDEAS
    5. Paul Feichtinger & Klaus Salhofer, 2016. "The Fischler Reform of the Common Agricultural Policy and Agricultural Land Prices," Land Economics, University of Wisconsin Press, vol. 92(3), pages 411-432.
    6. Gianfranco Piras & Paolo Postiglione & Patricio Aroca, 2012. "Specialization, R&D and productivity growth: evidence from EU regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(1), pages 35-51, August.
    7. Pebesma, Edzer & Bivand, Roger & Ribeiro, Paulo Justiniano, 2015. "Software for Spatial Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i01).
    8. Marcos Herrera Gomez, 2015. "Econometría espacial usando Stata. Breve guía aplicada para datos de corte transversal," Working Papers 13, Instituto de Estudios Laborales y del Desarrollo Económico (IELDE) - Universidad Nacional de Salta - Facultad de Ciencias Económicas, Jurídicas y Sociales.
    9. Feichtinger, Paul & Salhofer, Klaus, 2014. "The common agricultural policy of the EU and agricultural land prices - a spatial econometric approach for Bavaria," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182751, European Association of Agricultural Economists.
    10. Oliver W. Lerbs & Christian A. Oberst, 2014. "Explaining the Spatial Variation in Homeownership Rates: Results for German Regions," Regional Studies, Taylor & Francis Journals, vol. 48(5), pages 844-865, May.
    11. repec:asg:wpaper:1045 is not listed on IDEAS
    12. Minmeng Tang & Deb Niemeier, 2021. "How Does Air Pollution Influence Housing Prices in the Bay Area?," IJERPH, MDPI, vol. 18(22), pages 1-13, November.
    13. Christian Helmers & Manasa Patnam, 2014. "Does the rotten child spoil his companion? Spatial peer effects among children in rural India," Quantitative Economics, Econometric Society, vol. 5, pages 67-121, March.
    14. repec:asg:wpaper:1047 is not listed on IDEAS
    15. Panagiotis Artelaris & George Petrakos, 2016. "Intraregional Spatial Inequalities and Regional Income Level in the European Union," International Regional Science Review, , vol. 39(3), pages 291-317, July.
    16. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    17. Harald Badinger & Peter Egger, 2015. "Fixed Effects and Random Effects Estimation of Higher-order Spatial Autoregressive Models with Spatial Autoregressive and Heteroscedastic Disturbances," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(1), pages 11-35, March.
    18. Liu, Shew Fan & Yang, Zhenlin, 2015. "Modified QML estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality," Regional Science and Urban Economics, Elsevier, vol. 52(C), pages 50-70.
    19. Bonanno, Alessandro & Ghosh, Gaurav S., 2010. "SNAP Efficacy and Food Access – A Nationwide Spatial Analysis," 115th Joint EAAE/AAEA Seminar, September 15-17, 2010, Freising-Weihenstephan, Germany 116437, European Association of Agricultural Economists.
    20. Stefan Felder & Harald Tauchmann, 2013. "Federal state differentials in the efficiency of health production in Germany: an artifact of spatial dependence?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(1), pages 21-39, February.
    21. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    22. Kwon, Sanguk & Cho, Seong-Hoon & Roberts, Roland K. & Kim, Hyun Jae & Park, KiHyun & Edward Yu, Tun-Hsiang, 2016. "Short-run and the long-run effects of electricity price on electricity intensity across regions," Applied Energy, Elsevier, vol. 172(C), pages 372-382.
    23. Patricia Suárez & Matías Mayor & Begoña Cueto, 2012. "The accessibility to employment offices in the Spanish labour market," Papers in Regional Science, Wiley Blackwell, vol. 91(4), pages 823-848, November.

    More about this item

    Keywords

    Spatial model; Heterogeneity; GMM; R;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jospat:v:4:y:2023:i:1:d:10.1007_s43071-023-00034-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.