IDEAS home Printed from https://ideas.repec.org/p/swe/wpaper/2019-08.html
   My bibliography  Save this paper

A Doubly Corrected Robust Variance Estimator for Linear GMM

Author

Listed:
  • Jungbin Hwang

    (Department of Economics, The University of Connecticut)

  • Byunghoon Kang

    (Department of Economics, Lancaster University)

  • Seojeong Lee

    (School of Economics, The University of New South Wales)

Abstract

We propose a new finite sample corrected variance estimator for the linear generalized method of moments (GMM) including the one-step, two-step, and iterated estimators. Our formula additionally corrects for the over-identification bias in variance estimation on top of the commonly used finite sample correction of Windmeijer (2005) which corrects for the bias from estimating the efficient weight matrix, so is doubly corrected. Formal stochastic expansions are derived to show the proposed double correction estimates the variance of some higher-order terms in the expansion. In addition, the proposed double correction provides robustness to misspecification of the moment condition. In contrast, the conventional variance estimator and the Windmeijer correction are inconsistent under misspecification. That is, the proposed double correction formula provides a convenient way to obtain improved inference under correct specification and robustness against misspecification at the same time.

Suggested Citation

  • Jungbin Hwang & Byunghoon Kang & Seojeong Lee, 2019. "A Doubly Corrected Robust Variance Estimator for Linear GMM," Discussion Papers 2019-08, School of Economics, The University of New South Wales.
  • Handle: RePEc:swe:wpaper:2019-08
    as

    Download full text from publisher

    File URL: http://research.economics.unsw.edu.au/RePEc/papers/2019-08.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stephen Bond & Frank Windmeijer, 2005. "Reliable Inference For Gmm Estimators? Finite Sample Properties Of Alternative Test Procedures In Linear Panel Data Models," Econometric Reviews, Taylor & Francis Journals, vol. 24(1), pages 1-37.
    2. Lee, Seojeong, 2016. "Asymptotic refinements of a misspecification-robust bootstrap for GEL estimators," Journal of Econometrics, Elsevier, vol. 192(1), pages 86-104.
    3. Hwang, Jungbin & Kang, Byunghoon & Lee, Seojeong, 2022. "A doubly corrected robust variance estimator for linear GMM," Journal of Econometrics, Elsevier, vol. 229(2), pages 276-298.
    4. Hwang, Jungbin & Sun, Yixiao, 2018. "Should we go one step further? An accurate comparison of one-step and two-step procedures in a generalized method of moments framework," Journal of Econometrics, Elsevier, vol. 207(2), pages 381-405.
    5. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    6. Yuichi Kitamura & Taisuke Otsu & Kirill Evdokimov, 2013. "Robustness, Infinitesimal Neighborhoods, and Moment Restrictions," Econometrica, Econometric Society, vol. 81(3), pages 1185-1201, May.
    7. St'ephane Bonhomme & Martin Weidner, 2018. "Minimizing Sensitivity to Model Misspecification," Papers 1807.02161, arXiv.org, revised Oct 2021.
    8. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    9. Donald W. K. Andrews, 2002. "Higher-Order Improvements of a Computationally Attractive "k"-Step Bootstrap for Extremum Estimators," Econometrica, Econometric Society, vol. 70(1), pages 119-162, January.
    10. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    11. Seojeong Lee, 2018. "A Consistent Variance Estimator for 2SLS When Instruments Identify Different LATEs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 400-410, July.
    12. Chirok Han & Peter C. B. Phillips, 2006. "GMM with Many Moment Conditions," Econometrica, Econometric Society, vol. 74(1), pages 147-192, January.
    13. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    14. Frank Windmeijer, 2000. "A finite sample correction for the variance of linear two-step GMM estimators," IFS Working Papers W00/19, Institute for Fiscal Studies.
    15. Otsu, Taisuke, 2011. "Moderate deviations of generalized method of moments and empirical likelihood estimators," Journal of Multivariate Analysis, Elsevier, vol. 102(8), pages 1203-1216, September.
    16. Rothenberg, Thomas J., 1984. "Approximating the distributions of econometric estimators and test statistics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 15, pages 881-935, Elsevier.
    17. Horowitz, J., 1996. "Bootstrap Critical Values For Tests Based On The Smoothed Maximum Score Estimator," SFB 373 Discussion Papers 1996,44, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    18. Hall, Alastair R. & Inoue, Atsushi, 2003. "The large sample behaviour of the generalized method of moments estimator in misspecified models," Journal of Econometrics, Elsevier, vol. 114(2), pages 361-394, June.
    19. Lee, Seojeong, 2014. "Asymptotic refinements of a misspecification-robust bootstrap for generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 178(P3), pages 398-413.
    20. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    21. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    22. Whitney K. Newey & Frank Windmeijer, 2009. "Generalized Method of Moments With Many Weak Moment Conditions," Econometrica, Econometric Society, vol. 77(3), pages 687-719, May.
    23. Alastair R. Hall, 2000. "Covariance Matrix Estimation and the Power of the Overidentifying Restrictions Test," Econometrica, Econometric Society, vol. 68(6), pages 1517-1528, November.
    24. Maasoumi, Esfandiar & Phillips, Peter C. B., 1982. "On the behavior of inconsistent instrumental variable estimators," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 183-201, August.
    25. Corbae,Dean & Durlauf,Steven N. & Hansen,Bruce E. (ed.), 2006. "Econometric Theory and Practice," Cambridge Books, Cambridge University Press, number 9780521807234, September.
    26. Guggenberger, Patrik, 2012. "On The Asymptotic Size Distortion Of Tests When Instruments Locally Violate The Exogeneity Assumption," Econometric Theory, Cambridge University Press, vol. 28(2), pages 387-421, April.
    27. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    28. Taisuke Otsu, 2011. "Large deviations of generalized method of moments and empirical likelihood estimators," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 321-329, July.
    29. Kundhi, Gubhinder & Rilstone, Paul, 2013. "Edgeworth And Saddlepoint Expansions For Nonlinear Estimators," Econometric Theory, Cambridge University Press, vol. 29(5), pages 1057-1078, October.
    30. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    31. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    32. Byunghoon Kang, 2018. "Higher Order Approximation of IV Estimators with Invalid Instruments," Working Papers 257105320, Lancaster University Management School, Economics Department.
    33. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2017. "Measuring the Sensitivity of Parameter Estimates to Estimation Moments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1553-1592.
    34. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    35. Magdalinos, Michael A., 1992. "Stochastic Expansions and Asymptotic Approximations," Econometric Theory, Cambridge University Press, vol. 8(3), pages 343-367, September.
    36. Jungbin Hwang, 2017. "Simple and Trustworthy Cluster-Robust GMM Inference," Working papers 2017-19, University of Connecticut, Department of Economics, revised Aug 2020.
    37. Andrews, Isaiah, 2019. "On the structure of IV estimands," Journal of Econometrics, Elsevier, vol. 211(1), pages 294-307.
    38. Kirill S. Evdokimov & Michal Kolesár, 2018. "Inference in Instrumental Variable Regression Analysis with Heterogeneous Treatment Effects," Working Papers 2018-16, Princeton University. Economics Department..
    39. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    40. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    41. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    42. Joel L. Horowitz, 1996. "Bootstrap Critical Values for Tests Based on the Smoothed Maximum Score Estimator," Econometrics 9603003, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrieş, Alin Marius & Chiper, Alexandra Maria & Ongena, Steven & Sprincean, Nicu, 2024. "External wealth of nations and systemic risk," Journal of Financial Stability, Elsevier, vol. 70(C).
    2. Hwang, Jungbin & Kang, Byunghoon & Lee, Seojeong, 2022. "A doubly corrected robust variance estimator for linear GMM," Journal of Econometrics, Elsevier, vol. 229(2), pages 276-298.
    3. Bruce E. Hansen & Seojeong Lee, 2021. "Inference for Iterated GMM Under Misspecification," Econometrica, Econometric Society, vol. 89(3), pages 1419-1447, May.
    4. Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.
    5. Rostand Arland Yebetchou Tchounkeu, 2023. "Public Health Efficiency and well-being in Italian province," Working Papers 479, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    6. Bernard Fingleton, 2022. "Modifying the linear two-step Windmeijer correction for the presence of spatial error dependence," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-18, December.
    7. Jungbin Hwang & Gonzalo Valdés, 2020. "Finite-sample Corrected Inference for Two-step GMM in Time Series," Working papers 2020-02, University of Connecticut, Department of Economics.
    8. Bernard Fingleton, 2023. "Estimating dynamic spatial panel data models with endogenous regressors using synthetic instruments," Journal of Geographical Systems, Springer, vol. 25(1), pages 121-152, January.
    9. Hwang, Jungbin & Valdés, Gonzalo, 2023. "Finite-sample corrected inference for two-step GMM in time series," Journal of Econometrics, Elsevier, vol. 234(1), pages 327-352.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Seojeong, 2014. "Asymptotic refinements of a misspecification-robust bootstrap for generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 178(P3), pages 398-413.
    2. Lee, Seojeong, 2016. "Asymptotic refinements of a misspecification-robust bootstrap for GEL estimators," Journal of Econometrics, Elsevier, vol. 192(1), pages 86-104.
    3. Bruce E. Hansen & Seojeong Lee, 2021. "Inference for Iterated GMM Under Misspecification," Econometrica, Econometric Society, vol. 89(3), pages 1419-1447, May.
    4. Seojeong Lee, 2018. "Asymptotic Refinements of a Misspecification-Robust Bootstrap for Generalized Empirical Likelihood Estimators," Papers 1806.00953, arXiv.org, revised Jun 2018.
    5. Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.
    6. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    7. Hwang, Jungbin & Valdés, Gonzalo, 2023. "Finite-sample corrected inference for two-step GMM in time series," Journal of Econometrics, Elsevier, vol. 234(1), pages 327-352.
    8. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    9. Prosper Dovonon, 2016. "Large Sample Properties of the Three-Step Euclidean Likelihood Estimators under Model Misspecification," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 465-514, April.
    10. Mihai Giurcanu & Brett Presnell, 2018. "Bootstrap inference for misspecified moment condition models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 605-630, June.
    11. Jungbin Hwang & Gonzalo Valdés, 2020. "Finite-sample Corrected Inference for Two-step GMM in Time Series," Working papers 2020-02, University of Connecticut, Department of Economics.
    12. Jungbin Hwang, 2017. "Simple and Trustworthy Cluster-Robust GMM Inference," Working papers 2017-19, University of Connecticut, Department of Economics, revised Aug 2020.
    13. Bruce E. Hansen & Seojeong Jay Lee, 2018. "Inference for Iterated GMM Under Misspecification and Clustering," Discussion Papers 2018-07, School of Economics, The University of New South Wales.
    14. Chirok Han & Hyoungjong Kim, 2023. "Dynamic panel GMM estimators with improved finite sample properties using parametric restrictions for dimension reduction," Empirical Economics, Springer, vol. 64(6), pages 2589-2610, June.
    15. Kundhi, Gubhinder & Rilstone, Paul, 2012. "Edgeworth expansions for GEL estimators," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 118-146.
    16. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    17. Seojeong Lee, 2018. "A Consistent Variance Estimator for 2SLS When Instruments Identify Different LATEs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 400-410, July.
    18. Hayakawa, Kazuhiko, 2019. "Alternative over-identifying restriction test in the GMM estimation of panel data models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 71-95.
    19. Kazuhiko Hayakawa & M. Hashem Pesaran, 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models," Working Paper series 38_12, Rimini Centre for Economic Analysis.
    20. A. Felipe & N. Martín & P. Miranda & L. Pardo, 2018. "Testing with Exponentially Tilted Empirical Likelihood," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1319-1358, December.
    21. Antoine, Bertille & Dovonon, Prosper, 2021. "Robust estimation with exponentially tilted Hellinger distance," Journal of Econometrics, Elsevier, vol. 224(2), pages 330-344.

    More about this item

    Keywords

    generalized method of moments; finite-sample correction; standard error; misspecification;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:swe:wpaper:2019-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hongyi Li (email available below). General contact details of provider: https://edirc.repec.org/data/senswau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.