IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v70y2002i1p119-162.html
   My bibliography  Save this article

Higher-Order Improvements of a Computationally Attractive "k"-Step Bootstrap for Extremum Estimators

Author

Listed:
  • Donald W. K. Andrews

    (John F. Kennedy School of Government, Harvard University, U.S.A. and NBER)

Abstract

This paper establishes the higher-order equivalence of the "k"-step bootstrap, introduced recently by Davidson and MacKinnon (1999), and the standard bootstrap. The "k"-step bootstrap is a very attractive alternative computationally to the standard bootstrap for statistics based on nonlinear extremum estimators, such as generalized method of moment and maximum likelihood estimators. The paper also extends results of Hall and Horowitz (1996) to provide new results regarding the higher-order improvements of the standard bootstrap and the "k"-step bootstrap for extremum estimators (compared to procedures based on first-order asymptotics). The results of the paper apply to Newton-Raphson (NR), default NR, line-search NR, and Gauss-Newton "k"-step bootstrap procedures. The results apply to the nonparametric iid bootstrap and nonoverlapping and overlapping block bootstraps. The results cover symmetric and equal-tailed two-sided "t" tests and confidence intervals, one-sided "t" tests and confidence intervals, Wald tests and confidence regions, and "J" tests of over-identifying restrictions. Copyright The Econometric Society 2002.

Suggested Citation

  • Donald W. K. Andrews, 2002. "Higher-Order Improvements of a Computationally Attractive "k"-Step Bootstrap for Extremum Estimators," Econometrica, Econometric Society, vol. 70(1), pages 119-162, January.
  • Handle: RePEc:ecm:emetrp:v:70:y:2002:i:1:p:119-162
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:70:y:2002:i:1:p:119-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.