Large Deviations of Generalized Method of Moments and Empirical Likelihood Estimators
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Taisuke Otsu, 2011. "Large deviations of generalized method of moments and empirical likelihood estimators," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 321-329, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hwang, Jungbin & Kang, Byunghoon & Lee, Seojeong, 2022.
"A doubly corrected robust variance estimator for linear GMM,"
Journal of Econometrics, Elsevier, vol. 229(2), pages 276-298.
- Jungbin Hwang & Byunghoon Kang & Seojeong Lee, 2019. "A Doubly Corrected Robust Variance Estimator for Linear GMM," Discussion Papers 2019-08, School of Economics, The University of New South Wales.
- Jungbin Hwang & Byunghoon Kang & Seojeong Lee, 2019. "A Doubly Corrected Robust Variance Estimator for Linear GMM," Working Papers 274731767, Lancaster University Management School, Economics Department.
- Jungbin Hwang & Byunghoon Kang & Seojeong Lee, 2019. "A Doubly Corrected Robust Variance Estimator for Linear GMM," Papers 1908.07821, arXiv.org, revised May 2020.
- Jiang, Hui & Wang, Shaochen, 2017. "Moderate deviation principles for classical likelihood ratio tests of high-dimensional normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 57-69.
- Byunghoon Kang, 2018. "Higher Order Approximation of IV Estimators with Invalid Instruments," Working Papers 257105320, Lancaster University Management School, Economics Department.
More about this item
Keywords
Generalized method of moments; Empirical likelihood; Large deviations;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2011-03-05 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1783. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.