IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v114y2003i2p361-394.html
   My bibliography  Save this article

The large sample behaviour of the generalized method of moments estimator in misspecified models

Author

Listed:
  • Hall, Alastair R.
  • Inoue, Atsushi

Abstract

This paper presents the limiting distribution theory for the GMM estimator when the estimation is based on a population moment condition which is subject to non--local (or fixed) misspecification. It is shown that if the parameter vector is overidentified then the weighting matrix plays a far more fundamental role than it does in the corresponding analysis for correctly specified models. Specifically, the rate of convergence of the estimator depends on the rate of convergence of the weighting matrix to its probability limit. The analysis is presented for four particular choices of weighting matrix which are commonly used in practice. In each case the limiting distribution theory is different, and also different from the limiting distribution in a correctly specified model. Statistics are proposed which allow the researcher to test hypotheses about the parameters in misspecified models.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Hall, Alastair R. & Inoue, Atsushi, 2003. "The large sample behaviour of the generalized method of moments estimator in misspecified models," Journal of Econometrics, Elsevier, vol. 114(2), pages 361-394, June.
  • Handle: RePEc:eee:econom:v:114:y:2003:i:2:p:361-394
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(03)00089-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Francis X. Diebold & Lee E. Ohanian & Jeremy Berkowitz, 1998. "Dynamic Equilibrium Economies: A Framework for Comparing Models and Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 433-451.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Watson, Mark W, 1993. "Measures of Fit for Calibrated Models," Journal of Political Economy, University of Chicago Press, vol. 101(6), pages 1011-1041, December.
    4. Hansen, Lars Peter & Jagannathan, Ravi, 1991. "Implications of Security Market Data for Models of Dynamic Economies," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 225-262, April.
    5. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-972, July.
    6. Durlauf, Steven N. & Maccini, Louis J., 1995. "Measuring noise in inventory models," Journal of Monetary Economics, Elsevier, vol. 36(1), pages 65-89, August.
    7. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    8. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    9. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    10. Alastair R. Hall, 2000. "Covariance Matrix Estimation and the Power of the Overidentifying Restrictions Test," Econometrica, Econometric Society, vol. 68(6), pages 1517-1528, November.
    11. Maasoumi, Esfandiar & Phillips, Peter C. B., 1982. "On the behavior of inconsistent instrumental variable estimators," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 183-201, August.
    12. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245, Elsevier.
    13. Ferson, Wayne E. & Constantinides, George M., 1991. "Habit persistence and durability in aggregate consumption: Empirical tests," Journal of Financial Economics, Elsevier, vol. 29(2), pages 199-240, October.
    14. Meghir, Costas & Weber, Guglielmo, 1996. "Intertemporal Nonseparability or Borrowing Restrictions? A Disaggregate Analysis Using a U.S. Consumption Panel," Econometrica, Econometric Society, vol. 64(5), pages 1151-1181, September.
    15. Cochrane, John H, 1996. "A Cross-Sectional Test of an Investment-Based Asset Pricing Model," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 572-621, June.
    16. Hansen, Lars Peter & Sargent, Thomas J., 1993. "Seasonality and approximation errors in rational expectations models," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 21-55.
    17. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    18. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    19. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    20. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    2. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    3. Wayne E. Ferson & Ravi Jagannathan, 1996. "Econometric evaluation of asset pricing models," Staff Report 206, Federal Reserve Bank of Minneapolis.
    4. Smith, Richard J., 2005. "Automatic Positive Semidefinite Hac Covariance Matrix And Gmm Estimation," Econometric Theory, Cambridge University Press, vol. 21(1), pages 158-170, February.
    5. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    6. Peñaranda, Francisco & Sentana, Enrique, 2012. "Spanning tests in return and stochastic discount factor mean–variance frontiers: A unifying approach," Journal of Econometrics, Elsevier, vol. 170(2), pages 303-324.
    7. Hansen, Lars Peter & Jagannathan, Ravi, 1997. "Assessing Specification Errors in Stochastic Discount Factor Models," Journal of Finance, American Finance Association, vol. 52(2), pages 557-590, June.
    8. Otrok, Christopher & Ravikumar, B. & Whiteman, Charles H., 2007. "A generalized volatility bound for dynamic economies," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2269-2290, November.
    9. Prosper Dovonon, 2016. "Large Sample Properties of the Three-Step Euclidean Likelihood Estimators under Model Misspecification," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 465-514, April.
    10. repec:bla:jecsur:v:16:y:2002:i:3:p:301-55 is not listed on IDEAS
    11. Bakshi, Gurdip S. & Naka, Atsuyuki, 1997. "An empirical investigation of asset pricing models using Japanese stock market data," Journal of International Money and Finance, Elsevier, vol. 16(1), pages 81-112, February.
    12. Driessen, Joost & Melenberg, Bertrand & Nijman, Theo, 2005. "Testing affine term structure models in case of transaction costs," Journal of Econometrics, Elsevier, vol. 126(1), pages 201-232, May.
    13. Hwang, Jungbin & Kang, Byunghoon & Lee, Seojeong, 2022. "A doubly corrected robust variance estimator for linear GMM," Journal of Econometrics, Elsevier, vol. 229(2), pages 276-298.
    14. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    15. Lee, Seojeong, 2014. "Asymptotic refinements of a misspecification-robust bootstrap for generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 178(P3), pages 398-413.
    16. Chen, Xiaohong & Liao, Zhipeng, 2015. "Sieve semiparametric two-step GMM under weak dependence," Journal of Econometrics, Elsevier, vol. 189(1), pages 163-186.
    17. Almeida, Caio & Garcia, René, 2012. "Assessing misspecified asset pricing models with empirical likelihood estimators," Journal of Econometrics, Elsevier, vol. 170(2), pages 519-537.
    18. Smith, Richard J., 2011. "Gel Criteria For Moment Condition Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1192-1235, December.
    19. Liu, Ludan, 2008. "It takes a model to beat a model: Volatility bounds," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 80-110, January.
    20. Bekaert, Geert, 1996. "The Time Variation of Risk and Return in Foreign Exchange Markets: A General Equilibrium Perspective," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 427-470.
    21. Jondeau, Eric & Le Bihan, Hervé, 2008. "Examining bias in estimators of linear rational expectations models under misspecification," Journal of Econometrics, Elsevier, vol. 143(2), pages 375-395, April.
    22. Berkowitz, Jeremy, 2001. "Generalized spectral estimation of the consumption-based asset pricing model," Journal of Econometrics, Elsevier, vol. 104(2), pages 269-288, September.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:114:y:2003:i:2:p:361-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.