IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/838.html
   My bibliography  Save this paper

Fractionality and co-fractionality between Government Bond yields

Author

Listed:

Abstract

In a co-fractional vector autoregressive (VAR) model two more parameters are estimated, compared to the traditional cointegrated VAR model. The increased number of parameters that needs to be estimated leads to identification problems; there is no unique formulation of a co-fractional system, though usually one formulation is preferred. This paper has the following contributions: (i) it discusses different kinds of identification problems in co-fractional VAR models; (ii) it proposes a specification test for higher order fractional processes; (iii) it presents an Ox program that can be used for estimating and testing co-fractional systems; and (iv) it uses the above mentioned contributions to analyse a system of Government Bonds in the US and Norway where the results indicates that the level and trend in the yield curve have a longer memory than the curvature (i.e., a linear combination of the yields of the Government Bonds that corresponds to representing the curvature of the yield curve is a co-fractional relationship).

Suggested Citation

  • Håvard Hungnes, 2016. "Fractionality and co-fractionality between Government Bond yields," Discussion Papers 838, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:838
    as

    Download full text from publisher

    File URL: https://www.ssb.no/en/forskning/discussion-papers/_attachment/263603
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. Johansen, Søren & Nielsen, Morten Ørregaard, 2010. "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics, Elsevier, vol. 158(1), pages 51-66, September.
    3. Andreas Noack Jensen & Morten Ørregaard Nielsen, 2014. "A Fast Fractional Difference Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 428-436, August.
    4. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    5. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(3), pages 651-676, June.
    6. Federico Carlini & Paolo Santucci de Magistris, 2019. "On the Identification of Fractionally Cointegrated VAR Models With the Condition," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 134-146, January.
    7. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    8. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    9. Greg Duffee, 2011. "Forecasting with the term structure: The role of no-arbitrage restrictions," Economics Working Paper Archive 576, The Johns Hopkins University,Department of Economics.
    10. Daniela Osterrieder & Peter C. Schotman, 2012. "The Volatility of Long-term Bond Returns: Persistent Interest Shocks and Time-varying Risk Premiums," CREATES Research Papers 2012-35, Department of Economics and Business Economics, Aarhus University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," Discussion Papers 19/01, University of Nottingham, Granger Centre for Time Series Econometrics.
    2. Søren Johansen & Morten Ørregaard Nielsen, 2019. "Nonstationary Cointegration in the Fractionally Cointegrated VAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 519-543, July.
    3. Søren Johansen & Morten Ørregaard Nielsen, 2018. "Testing the CVAR in the Fractional CVAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 836-849, November.
    4. Dolatabadi, Sepideh & Nielsen, Morten Ørregaard & Xu, Ke, 2016. "A fractionally cointegrated VAR model with deterministic trends and application to commodity futures markets," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 623-639.
    5. Sepideh Dolatabadi & Morten Ørregaard Nielsen & Ke Xu, 2015. "A Fractionally Cointegrated VAR Analysis of Price Discovery in Commodity Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(4), pages 339-356, April.
    6. Alexander Boca Saravia & Gabriel Rodríguez, 2022. "Presidential approval in Peru: an empirical analysis using a fractionally cointegrated VAR," Economic Change and Restructuring, Springer, vol. 55(3), pages 1973-2010, August.
    7. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," CREATES Research Papers 2019-02, Department of Economics and Business Economics, Aarhus University.
    8. Bent Jesper Christensen & Nabanita Datta Gupta & Paolo Santucci de Magistris, 2021. "Measuring the impact of clean energy production on CO2 abatement in Denmark: Upper bound estimation and forecasting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 118-149, January.
    9. Maggie E. C. Jones & Morten Ørregaard Nielsen & Michał Ksawery Popiel, 2014. "A fractionally cointegrated VAR analysis of economic voting and political support," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 47(4), pages 1078-1130, November.
    10. Morten Ø. Nielsen & Michal Ksawery Popiel, 2018. "A Matlab Program And User's Guide For The Fractionally Cointegrated Var Model," Working Paper 1330, Economics Department, Queen's University.
    11. Federico Carlini & Paolo Santucci de Magistris, 2019. "On the Identification of Fractionally Cointegrated VAR Models With the Condition," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 134-146, January.
    12. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    13. Sepideh Dolatabadi & Paresh Kumar Narayan & Morten Ørregaard Nielsen & Ke Xu, 2018. "Economic significance of commodity return forecasts from the fractionally cointegrated VAR model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 219-242, February.
    14. Galán-Gutiérrez, Juan Antonio & Martín-García, Rodrigo, 2021. "Cointegration between the structure of copper futures prices and Brexit," Resources Policy, Elsevier, vol. 71(C).
    15. Daniela Osterrieder & Daniel Ventosa-Santaulària & J. Eduardo Vera-Valdés, 2015. "Unbalanced Regressions and the Predictive Equation," CREATES Research Papers 2015-09, Department of Economics and Business Economics, Aarhus University.
    16. Søren Johansen & Morten Ørregaard Nielsen, 2012. "The role of initial values in nonstationary fractional time series models," Discussion Papers 12-18, University of Copenhagen. Department of Economics.
    17. Stoupos, Nikolaos & Kiohos, Apostolos, 2022. "Euro area stock markets integration: Empirical evidence after the end of 2010 debt crisis," Finance Research Letters, Elsevier, vol. 46(PB).
    18. Guglielmo Maria Caporale & Luis A. Gil-Alana, 2020. "Modelling Loans to Non-Financial Corporations within the Eurozone: A Long-Memory Approach," CESifo Working Paper Series 8674, CESifo.
    19. Filippo Beltrami & Fulvio Fontini & Monica Giulietti & Luigi Grossi, 2022. "The Zonal and Seasonal CO2 Marginal Emissions Factors for the Italian Power Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 381-411, October.
    20. Samet Gunay, 2018. "Fractionally Cointegrated Vector Autoregression Model: Evaluation of High/Low and Close/Open Spreads for Precious Metals," SAGE Open, , vol. 8(4), pages 21582440188, November.

    More about this item

    Keywords

    Fractional cointegration;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: L Maasø (email available below). General contact details of provider: https://edirc.repec.org/data/ssbgvno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.