IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v35y2015i4p339-356.html
   My bibliography  Save this article

A Fractionally Cointegrated VAR Analysis of Price Discovery in Commodity Futures Markets

Author

Listed:
  • Sepideh Dolatabadi
  • Morten Ørregaard Nielsen
  • Ke Xu

Abstract

In this paper, we apply the recently developed fractionally cointegrated vector autoregressive (FCVAR) model to analyze price discovery in the spot and futures markets for five non‐ferrous metals (aluminum, copper, lead, nickel, and zinc). The FCVAR model allows for long memory (fractional integration) in the equilibrium errors, and, following Figuerola‐Ferretti and Gonzalo (2010), we allow for the existence of long‐run backwardation or contango in the equilibrium as well, that is, a non‐unit cointegration coefficient. Price discovery can be analyzed in the FCVAR model by a relatively straightforward examination of the adjustment coefficients. In our empirical analysis, we use the data from Figuerola‐Ferretti and Gonzalo (2010), who conduct a similar analysis using the usual (non‐fractional) CVAR model. Our first finding is that, for all markets except copper, the fractional integration parameter is highly significant, showing that the usual, non‐fractional model is not appropriate. Next, when allowing for fractional integration in the long‐run equilibrium relations, fewer lags are needed in the autoregressive formulation, further stressing the usefulness of the fractional model. Compared to the results from the non‐fractional model, we find slightly more evidence of price discovery in the spot market. Specifically, using standard likelihood ratio tests, we do not reject the hypothesis that price discovery takes place exclusively in the spot (futures) market for copper, lead, and zinc (aluminum and nickel). © 2014 Wiley Periodicals, Inc. Jrl Fut Mark 35:339–356, 2015

Suggested Citation

  • Sepideh Dolatabadi & Morten Ørregaard Nielsen & Ke Xu, 2015. "A Fractionally Cointegrated VAR Analysis of Price Discovery in Commodity Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(4), pages 339-356, April.
  • Handle: RePEc:wly:jfutmk:v:35:y:2015:i:4:p:339-356
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. Donald Lien & Yiu Kuen Tse, 1999. "Fractional cointegration and futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(4), pages 457-474, June.
    3. Johansen, Søren & Nielsen, Morten Ørregaard, 2010. "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics, Elsevier, vol. 158(1), pages 51-66, September.
    4. Sepideh Dolatabadi & Morten Ørregaard Nielsen & Ke Xu, 2015. "A Fractionally Cointegrated VAR Analysis of Price Discovery in Commodity Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(4), pages 339-356, April.
    5. Jing Quan, 1992. "Two‐step testing procedure for price discovery role of futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 12(2), pages 139-149, April.
    6. Andreas Noack Jensen & Morten Ørregaard Nielsen, 2014. "A Fast Fractional Difference Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 428-436, August.
    7. Garbade, Kenneth D & Silber, William L, 1983. "Price Movements and Price Discovery in Futures and Cash Markets," The Review of Economics and Statistics, MIT Press, vol. 65(2), pages 289-297, May.
    8. Morten Ø. Nielsen & Lealand Morin, 2014. "Fcvarmodel.m: A Matlab Software Package For Estimation And Testing In The Fractionally Cointegrated Var Model," Working Paper 1273, Economics Department, Queen's University.
    9. Morten Ø. Nielsen & Michal Ksawery Popiel, 2018. "A Matlab Program And User's Guide For The Fractionally Cointegrated Var Model," Working Paper 1330, Economics Department, Queen's University.
    10. Baillie, Richard T & Bollerslev, Tim, 1994. "The long memory of the forward premium," Journal of International Money and Finance, Elsevier, vol. 13(5), pages 565-571, October.
    11. Dolatabadi, Sepideh & Nielsen, Morten Ørregaard & Xu, Ke, 2016. "A fractionally cointegrated VAR model with deterministic trends and application to commodity futures markets," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 623-639.
    12. Søren Johansen & Morten Ørregaard Nielsen, 2012. "The role of initial values in nonstationary fractional time series models," CREATES Research Papers 2012-47, Department of Economics and Business Economics, Aarhus University.
    13. Gonzalo, Jesus & Granger, Clive W J, 1995. "Estimation of Common Long-Memory Components in Cointegrated Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 27-35, January.
    14. Holbrook Working, 1948. "Theory of the Inverse Carrying Charge in Futures Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(1), pages 1-28.
    15. Jerry Coakley & Jian Dollery & Neil Kellard, 2011. "Long memory and structural breaks in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(11), pages 1076-1113, November.
    16. Nicholas Kaldor, 1939. "Speculation and Economic Stability," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 7(1), pages 1-27.
    17. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(3), pages 651-676, June.
    18. Federico Carlini & Paolo Santucci de Magistris, 2019. "On the Identification of Fractionally Cointegrated VAR Models With the Condition," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 134-146, January.
    19. James G. MacKinnon & Morten Ørregaard Nielsen, 2014. "Numerical Distribution Functions Of Fractional Unit Root And Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 161-171, January.
    20. Ted C. Schroeder & Barry K. Goodwin, 1991. "Price discovery and cointegration for live hogs," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(6), pages 685-696, December.
    21. Abdur R. Chowdhury, 1991. "Futures market efficiency: Evidence from cointegration tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(5), pages 577-589, October.
    22. Neil Kellard & Paul Newbold & Tony Rayner & Christine Ennew, 1999. "The relative efficiency of commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(4), pages 413-432, June.
    23. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    24. Thomas V. Schwarz & Andrew C. Szakmary, 1994. "Price discovery in petroleum markets: Arbitrage, cointegration, and the time interval of analysis," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 14(2), pages 147-167, April.
    25. Kellard, Neil & Sarantis, Nicholas, 2008. "Can exchange rate volatility explain persistence in the forward premium?," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 714-728, September.
    26. Hasbrouck, Joel, 1995. "One Security, Many Markets: Determining the Contributions to Price Discovery," Journal of Finance, American Finance Association, vol. 50(4), pages 1175-1199, September.
    27. Alex Maynard & Peter C. B. Phillips, 2001. "Rethinking an old empirical puzzle: econometric evidence on the forward discount anomaly," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 671-708.
    28. Tim Krehbiel & Lee C. Adkins, 1993. "Cointegration tests of the unbiased expectations hypothesis in metals markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(7), pages 753-763, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dolatabadi, Sepideh & Nielsen, Morten Ørregaard & Xu, Ke, 2016. "A fractionally cointegrated VAR model with deterministic trends and application to commodity futures markets," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 623-639.
    2. Sepideh Dolatabadi & Paresh Kumar Narayan & Morten Ørregaard Nielsen & Ke Xu, 2018. "Economic significance of commodity return forecasts from the fractionally cointegrated VAR model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 219-242, February.
    3. Alexander Boca Saravia & Gabriel Rodríguez, 2022. "Presidential approval in Peru: an empirical analysis using a fractionally cointegrated VAR," Economic Change and Restructuring, Springer, vol. 55(3), pages 1973-2010, August.
    4. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    5. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," Discussion Papers 19/01, University of Nottingham, Granger Centre for Time Series Econometrics.
    6. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    7. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," CREATES Research Papers 2019-02, Department of Economics and Business Economics, Aarhus University.
    8. Morten Ørregaard Nielsen & Sergei S. Shibaev, 2015. "Forecasting daily political opinion polls using the fractionally cointegrated VAR model," Working Paper 1340, Economics Department, Queen's University.
    9. Maggie E. C. Jones & Morten Ørregaard Nielsen & Michał Ksawery Popiel, 2014. "A fractionally cointegrated VAR analysis of economic voting and political support," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 47(4), pages 1078-1130, November.
    10. Morten Ø. Nielsen & Michal Ksawery Popiel, 2018. "A Matlab Program And User's Guide For The Fractionally Cointegrated Var Model," Working Paper 1330, Economics Department, Queen's University.
    11. Yan, Meng & Chen, Jian & Song, Victor & Xu, Ke, 2022. "Trade friction and price discovery in the USD–CAD spot and forward markets," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    12. Bravo Caro, José Manuel & Golpe, Antonio A. & Iglesias, Jesús & Vides, José Carlos, 2020. "A new way of measuring the WTI – Brent spread. Globalization, shock persistence and common trends," Energy Economics, Elsevier, vol. 85(C).
    13. Chen, Yu-Lun & Xu, Ke, 2021. "The impact of RMB’s SDR inclusion on price discovery in onshore-offshore markets," Journal of Banking & Finance, Elsevier, vol. 127(C).
    14. Søren Johansen & Morten Ørregaard Nielsen, 2019. "Nonstationary Cointegration in the Fractionally Cointegrated VAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 519-543, July.
    15. Søren Johansen & Morten Ørregaard Nielsen, 2018. "Testing the CVAR in the Fractional CVAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 836-849, November.
    16. Jinghong Wu & Ke Xu & Xinwei Zheng & Jian Chen, 2021. "Fractional cointegration in bitcoin spot and futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(9), pages 1478-1494, September.
    17. Nikolaos Stoupos & Apostolos Kiohos, 2022. "Euro Area: Towards a European Common Bond? – Empirical Evidence from the Sovereign Debt Markets," Journal of Common Market Studies, Wiley Blackwell, vol. 60(4), pages 1019-1046, July.
    18. Quineche Ricardo, 2021. "Consumption, Aggregate Wealth and Expected Stock Returns: An FCVAR Approach," Journal of Time Series Econometrics, De Gruyter, vol. 13(1), pages 21-42, January.
    19. Ke Xu & Yu‐Lun Chen & Bo Liu & Jian Chen, 2024. "Price discovery and long‐memory property: Simulation and empirical evidence from the bitcoin market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 605-618, April.
    20. Yaya, OlaOluwa S & Gil-Alana, Luis A., 2018. "High and Low Intraday Commodity Prices: A Fractional Integration and Cointegration Approach," MPRA Paper 90518, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:35:y:2015:i:4:p:339-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.