IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1172.html
   My bibliography  Save this paper

Likelihood Inference For A Nonstationary Fractional Autoregressive Model

Author

Listed:
  • Morten Ø. Nielsen

    (Queen's University and CREATES)

  • S Johansen

    (University of Copenhagen and CREATES)

Abstract

This paper discusses model-based inference in an autoregressive model for fractional processes which allows the process to be fractional of order d or d-b. Fractional differencing involves inÂ…nitely many past values and because we are interested in nonstationary processes we model the data X_{1},...,X_{T} given the initial values X_{-n}, n = 0,1,..., as is usually done. The initial values are not modeled but assumed to be bounded. This represents a considerable generalization relative to all previous work where it is assumed that initial values are zero. For the statistical analysis we assume the conditional Gaussian likelihood and for the probability analysis we also condition on initial values but assume that the errors in the autoregressive model are i.i.d. with suitable moment conditions.We analyze the conditional likelihood and its derivatives as stochastic processes in the parameters, including d and b, and prove that they converge in distribution. We use the results to prove consistency of the maximum likelihood estimator for d,b in a large compact subset of {1/2

Suggested Citation

  • Morten Ø. Nielsen & S Johansen, 2009. "Likelihood Inference For A Nonstationary Fractional Autoregressive Model," Working Paper 1172, Economics Department, Queen's University.
  • Handle: RePEc:qed:wpaper:1172
    as

    Download full text from publisher

    File URL: https://www.econ.queensu.ca/sites/econ.queensu.ca/files/qed_wp_1172.pdf
    File Function: First version 2009
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hall, Robert E, 1978. "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory and Evidence," Journal of Political Economy, University of Chicago Press, vol. 86(6), pages 971-987, December.
    2. Nielsen, Morten Ørregaard, 2004. "Efficient Likelihood Inference In Nonstationary Univariate Models," Econometric Theory, Cambridge University Press, vol. 20(1), pages 116-146, February.
    3. Newey, Whitney K, 1991. "Uniform Convergence in Probability and Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 59(4), pages 1161-1167, July.
    4. P. M. Robinson & J. Hualde, 2003. "Cointegration in Fractional Systems with Unknown Integration Orders," Econometrica, Econometric Society, vol. 71(6), pages 1727-1766, November.
    5. Andrews, Donald W.K., 1992. "Generic Uniform Convergence," Econometric Theory, Cambridge University Press, vol. 8(2), pages 241-257, June.
    6. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    7. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    8. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    9. Juan J. Dolado & Jesus Gonzalo & Laura Mayoral, 2002. "A Fractional Dickey-Fuller Test for Unit Roots," Econometrica, Econometric Society, vol. 70(5), pages 1963-2006, September.
    10. Ignacio N Lobato & Carlos Velasco, 2007. "Efficient Wald Tests for Fractional Unit Roots," Econometrica, Econometric Society, vol. 75(2), pages 575-589, March.
    11. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(4), pages 549-582, August.
    12. Javier Hualde & Peter M Robinson, 2003. "Cointegration in Fractional Systems with Unkown Integration Orders," STICERD - Econometrics Paper Series 449, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    13. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    14. Robinson, Peter M. & Hualde, Javier, 2003. "Cointegration in fractional systems with unknown integration orders," LSE Research Online Documents on Economics 2223, London School of Economics and Political Science, LSE Library.
    15. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    16. Marinucci, D. & Robinson, P. M., 2000. "Weak convergence of multivariate fractional processes," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 103-120, March.
    17. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(3), pages 651-676, June.
    18. Ling, Shiqing & Li, W.K., 2001. "Asymptotic Inference For Nonstationary Fractionally Integrated Autoregressive Moving-Average Models," Econometric Theory, Cambridge University Press, vol. 17(4), pages 738-764, August.
    19. Sowell, Fallaw, 1990. "The Fractional Unit Root Distribution," Econometrica, Econometric Society, vol. 58(2), pages 495-505, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. Dolado Juan J. & Gonzalo Jesus & Mayoral Laura, 2008. "Wald Tests of I(1) against I(d) Alternatives: Some New Properties and an Extension to Processes with Trending Components," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(4), pages 1-35, December.
    3. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    4. Nielsen, Morten, 2008. "A Powerful Tuning Parameter Free Test of the Autoregressive Unit Root Hypothesis," Working Papers 08-05, Cornell University, Center for Analytic Economics.
    5. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    6. Nielsen, Morten Ørregaard, 2009. "A Powerful Test Of The Autoregressive Unit Root Hypothesis Based On A Tuning Parameter Free Statistic," Econometric Theory, Cambridge University Press, vol. 25(6), pages 1515-1544, December.
    7. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2017. "Quasi-maximum likelihood estimation and bootstrap inference in fractional time series models with heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 198(1), pages 165-188.
    8. Christian Fischer & Luis Gil-Alana, 2009. "The nature of the relationship between international tourism and international trade: the case of German imports of Spanish wine," Applied Economics, Taylor & Francis Journals, vol. 41(11), pages 1345-1359.
    9. Avarucci, Marco & Velasco, Carlos, 2009. "A Wald test for the cointegration rank in nonstationary fractional systems," Journal of Econometrics, Elsevier, vol. 151(2), pages 178-189, August.
    10. Jakob Roland Munch & Michael Svarer, "undated". "Mortality and Socio-economic Differences in a Competing Risks Model," Economics Working Papers 2001-1, Department of Economics and Business Economics, Aarhus University.
    11. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    12. Gil-Alana, Luis A. & Yaya, OlaOluwa S. & Akinsomi, Omokolade & Coskun, Yener, 2020. "How do stocks in BRICS co-move with real estate stocks?," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 93-101.
    13. Christian Fischer & Luis Alberiko Gil-Alana, 2005. "The Nature of the Relationship between International Tourism and International Trade: The Case of Ge," Faculty Working Papers 15/05, School of Economics and Business Administration, University of Navarra.
    14. Aye, Goodness C. & Carcel, Hector & Gil-Alana, Luis A. & Gupta, Rangan, 2017. "Does gold act as a hedge against inflation in the UK? Evidence from a fractional cointegration approach over 1257 to 2016," Resources Policy, Elsevier, vol. 54(C), pages 53-57.
    15. Hualde, J. & Robinson, P.M., 2010. "Semiparametric inference in multivariate fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 157(2), pages 492-511, August.
    16. Cunado, J. & Gil-Alana, L. A. & Perez de Gracia, F., 2004. "Is the US fiscal deficit sustainable?: A fractionally integrated approach," Journal of Economics and Business, Elsevier, vol. 56(6), pages 501-526.
    17. Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015. "Nonparametric predictive regression," Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.
    18. Palandri, Alessandro, 2024. "Reconciling interest rates evidence with theory: Rejecting unit roots when the HD(1) is a competing alternative," Journal of Banking & Finance, Elsevier, vol. 161(C).
    19. Katarzyna Lasak, 2008. "Maximum likelihood estimation of fractionally cointegrated systems," CREATES Research Papers 2008-53, Department of Economics and Business Economics, Aarhus University.
    20. Robinson, P.M., 2005. "The distance between rival nonstationary fractional processes," Journal of Econometrics, Elsevier, vol. 128(2), pages 283-300, October.

    More about this item

    Keywords

    Dickey-Fuller test; fractional unit root; likelihood inference;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark Babcock (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.