AR Model or Machine Learning for Forecasting GDP and Consumer Price for G7 Countries
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Francisco Dias & Maximiano Pinheiro & António Rua, 2018.
"A bottom-up approach for forecasting GDP in a data-rich environment,"
Applied Economics Letters, Taylor & Francis Journals, vol. 25(10), pages 718-723, June.
- António Rua & Francisco Craveiro Dias, 2016. "A bottom-up approach for forecasting GDP in a data rich environment," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
- Stephen Hansen & Michael McMahon & Andrea Prat, 2018.
"Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 801-870.
- Stephen Eliot Hansen & Michael McMahon & Andrea Prat, 2014. "Transparency and deliberation within the FOMC: A computational linguistics approach," Economics Working Papers 1425, Department of Economics and Business, Universitat Pompeu Fabra.
- Stephen Hansen & Michael McMahon & Andrea Prat, 2014. "Transparency and Deliberation within the FOMC: a Computational Linguistics Approach," Working Papers 762, Barcelona School of Economics.
- Stephen Hansen & Michael McMahon & Andrea Prat, 2014. "Transparency and Deliberation within the FOMC: A Computational Linguistics Approach," CEP Discussion Papers dp1276, Centre for Economic Performance, LSE.
- Prat, Andrea & McMahon, Michael & Hansen, Stephen, 2014. "Transparency and Deliberation within the FOMC: a Computational Linguistics Approach," CEPR Discussion Papers 9994, C.E.P.R. Discussion Papers.
- Hansen, Stephen & McMahon, Michael & Prat, Andrea, 2014. "Transparency and deliberation within the FOMC: a computational linguistics approach," LSE Research Online Documents on Economics 60287, London School of Economics and Political Science, LSE Library.
- Hansen, Stephen & McMahon, Michael & Prat, Andrea, 2014. "Transparency and deliberation within the FOMC: a computational linguistics approach," LSE Research Online Documents on Economics 58072, London School of Economics and Political Science, LSE Library.
- Stephen Hansen & Michael McMahon & Andrea Prat, 2014. "Transparency and Deliberation within the FOMC: a Computational Linguistics Approach," Discussion Papers 1411, Centre for Macroeconomics (CFM).
- Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2017.
"Noisy News in Business Cycles,"
American Economic Journal: Macroeconomics, American Economic Association, vol. 9(4), pages 122-152, October.
- Lippi, Marco & Forni, Mario & Sala, Luca & Gambetti, Luca, 2013. "Noisy News in Business cycles," CEPR Discussion Papers 9601, C.E.P.R. Discussion Papers.
- Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2014. "Noisy News in Business Cycles," Working Papers 531, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2014. "Noisy News in Business Cycles," Center for Economic Research (RECent) 097, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
- Luca Gambetti, 2014. "Noisy News in Business Cycles," 2014 Meeting Papers 1406, Society for Economic Dynamics.
- Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017.
"The role of indicator selection in nowcasting euro-area GDP in pseudo-real time,"
Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
- A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
- Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
- Gebka, Bartosz & Wohar, Mark E., 2018. "The predictive power of the yield spread for future economic expansions: Evidence from a new approach," Economic Modelling, Elsevier, vol. 75(C), pages 181-195.
- Hur, Joonyoung, 2018. "Time-varying information rigidities and fluctuations in professional forecasters' disagreement," Economic Modelling, Elsevier, vol. 75(C), pages 117-131.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ádám Csápai, 0000. "Macroeconomic Forecasting Using Machine Learning: A Case of Slovakia," Proceedings of Economics and Finance Conferences 14115967, International Institute of Social and Economic Sciences.
- Daniel Hopp, 2021. "Economic Nowcasting with Long Short-Term Memory Artificial Neural Networks (LSTM)," Papers 2106.08901, arXiv.org.
- Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vegard H ghaug Larsen & Leif Anders Thorsrud, 2018.
"Business cycle narratives,"
Working Papers
No 6/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Vegard H. Larsen & Leif Anders Thorsrud, 2019. "Business Cycle Narratives," CESifo Working Paper Series 7468, CESifo.
- Vegard H. Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Paper 2018/3, Norges Bank.
- Lenard Lieb & Adam Jassem & Rui Jorge Almeida & Nalan Bac{s}turk & Stephan Smeekes, 2021. "Min(d)ing the President: A text analytic approach to measuring tax news," Papers 2104.03261, arXiv.org, revised Dec 2024.
- Larsen, Vegard H. & Thorsrud, Leif A., 2019. "The value of news for economic developments," Journal of Econometrics, Elsevier, vol. 210(1), pages 203-218.
- Golinelli, Roberto & Parigi, Giuseppe, 2014.
"Tracking world trade and GDP in real time,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
- Roberto Golinelli & Giuseppe Parigi, 2013. "Tracking world trade and GDP in real time," Temi di discussione (Economic working papers) 920, Bank of Italy, Economic Research and International Relations Area.
- Carlo Altavilla & Paul De Grauwe, 2010.
"Forecasting and combining competing models of exchange rate determination,"
Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
- Carlo Altavilla & Paul De Grauwe, 2006. "Forecasting and Combining Competing Models of Exchange rate Determination," Discussion Papers 5_2006, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
- Carlo Altavilla & Paul De Grauwe, 2006. "Forecasting and Combining Competing Models of Exchange Rate Determination," CESifo Working Paper Series 1747, CESifo.
- Christoffersen, Peter & Ghysels, Eric & Swanson, Norman R., 2002.
"Let's get "real" about using economic data,"
Journal of Empirical Finance, Elsevier, vol. 9(3), pages 343-360, August.
- Peter Christoffersen & Eric Ghysels & Norman R. Swanson, "undated". "Let's Get "Real" about Using Economic Data," EPRU Working Paper Series 01-15, Economic Policy Research Unit (EPRU), University of Copenhagen. Department of Economics.
- Peter Christoffersen & Eric Ghysels & Norman Swanson, 2000. "Let's Get "Real" About Using Economic Data," Econometric Society World Congress 2000 Contributed Papers 1004, Econometric Society.
- Peter Christoffersen & Eric Ghysels & Norman R. Swanson, 2001. "Let's Get "Real"" about Using Economic Data"," CIRANO Working Papers 2001s-44, CIRANO.
- Mueller, Hannes & Rauh, Christopher, 2018.
"Reading Between the Lines: Prediction of Political Violence Using Newspaper Text,"
American Political Science Review, Cambridge University Press, vol. 112(2), pages 358-375, May.
- Hannes Mueller & Christopher Rauh, 2016. "Reading Between the Lines: Prediction of Political Violence Using Newspaper Text," Cambridge Working Papers in Economics 1630, Faculty of Economics, University of Cambridge.
- Hannes Mueller & Christopher Rauh, 2017. "Reading Between the Lines: Prediction of Political Violence Using Newspaper Text," Working Papers 990, Barcelona School of Economics.
- Mueller, Hannes & Rauh, Christopher, 2016. "Reading Between the Lines: Prediction of Political Violence Using Newspaper Text," CEPR Discussion Papers 11516, C.E.P.R. Discussion Papers.
- Hannes Mueller & Christopher Rauh, 2016. "Reading Between the Lines: Prediction of Political Violence Using Newspaper Text," Empirical Studies of Conflict Project (ESOC) Working Papers 2, Empirical Studies of Conflict Project.
- Bennani, Hamza & Romelli, Davide, 2024.
"Exploring the informativeness and drivers of tone during committee meetings: The case of the Federal Reserve,"
Journal of International Money and Finance, Elsevier, vol. 148(C).
- Hamza Bennani & Davide Romelli, 2024. "Exploring the informativeness and drivers of tone during committee meetings: the case of the Federal Reserve," Post-Print hal-04670309, HAL.
- Bedri Kamil Onur Taş, 2016. "Does the Federal Reserve have Private Information about its Future Actions?," Economica, London School of Economics and Political Science, vol. 83(331), pages 498-517, July.
- Di Bella, Gabriel & Grigoli, Francesco, 2019.
"Optimism, pessimism, and short-term fluctuations,"
Journal of Macroeconomics, Elsevier, vol. 60(C), pages 79-96.
- Gabriel Di Bella & Mr. Francesco Grigoli, 2018. "Optimism, Pessimism, and Short-Term Fluctuations," IMF Working Papers 2018/001, International Monetary Fund.
- McCannon, Bryan & Zhou, Yang & Hall, Joshua, 2021. "Measuring a Contract’s Breadth: A Text Analysis," Working Papers 11013, George Mason University, Mercatus Center.
- Kirtac, Kemal & Germano, Guido, 2024.
"Sentiment trading with large language models,"
Finance Research Letters, Elsevier, vol. 62(PB).
- Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," LSE Research Online Documents on Economics 122592, London School of Economics and Political Science, LSE Library.
- Kemal Kirtac & Guido Germano, 2024. "Sentiment trading with large language models," Papers 2412.19245, arXiv.org.
- Grajzl, Peter & Murrell, Peter, 2021.
"A machine-learning history of English caselaw and legal ideas prior to the Industrial Revolution I: generating and interpreting the estimates,"
Journal of Institutional Economics, Cambridge University Press, vol. 17(1), pages 1-19, February.
- Peter Grajzl & Peter Murrell, 2020. "A Machine-Learning History of English Caselaw and Legal Ideas Prior to the Industrial Revolution I: Generating and Interpreting the Estimates," CESifo Working Paper Series 8774, CESifo.
- Santiago Camara, 2021. "Spillovers of US Interest Rates: Monetary Policy & Information Effects," Papers 2111.08631, arXiv.org, revised Feb 2023.
- Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011.
"Optimal combination forecasts for hierarchical time series,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
- Rob J. Hyndman & Roman A. Ahmed & George Athanasopoulos, 2007. "Optimal combination forecasts for hierarchical time series," Monash Econometrics and Business Statistics Working Papers 9/07, Monash University, Department of Econometrics and Business Statistics.
- Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
- David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, April.
- Ryan Chahrour & Kyle Jurado, 2018.
"News or Noise? The Missing Link,"
American Economic Review, American Economic Association, vol. 108(7), pages 1702-1736, July.
- Ryan Chahrour & Kyle Jurado, 2016. "News or Noise? The Missing Link," Boston College Working Papers in Economics 917, Boston College Department of Economics, revised 02 Nov 2017.
- Kyle Jurado & Ryan Chahrour, 2017. "News or Noise? The Missing Link," 2017 Meeting Papers 320, Society for Economic Dynamics.
- Gabriel Arce‐Alfaro & Boris Blagov, 2023. "Monetary Policy Uncertainty and Inflation Expectations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(1), pages 70-94, February.
- Starck, Christian, 1991. "Specifying a Bayesian vector autoregression for short-run macroeconomic forecasting with an application to Finland," Research Discussion Papers 4/1991, Bank of Finland.
More about this item
Keywords
AI; AR; consumer price; GDP; machine learning;All these keywords.
JEL classification:
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rfa:aefjnl:v:6:y:2019:i:3:p:1-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Redfame publishing (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.