IDEAS home Printed from https://ideas.repec.org/p/aob/wpaper/62.html
   My bibliography  Save this paper

Система селективно - комбинированного прогноза инфляции (SSCIF)// Selective-Combined Inflation Forecasting System

Author

Listed:
  • Адилханова Зарина // Adilkhanova Zarina

    (National Bank of Kazakhstan)

  • Ержан Ислам // Yerzhan Islam

    (National Bank of Kazakhstan)

Abstract

В условиях нестабильной макроэкономической среды повышение точности прогнозирования инфляции является приоритетной задачей для центральных банков, особенно тех, которые придерживаются режима инфляционного таргетирования. Традиционные эконометрические модели сталкиваются с ограничениями при учёте волатильности, внешних шоков и нелинейных взаимосвязей. Данное исследование направлено на улучшение прогнозирования инфляции путём интеграции методов машинного обучения в существующую систему селективно-комбинированного прогнозирования инфляции. Включение таких алгоритмов, как Ridge Regression, Lasso Regression и Elastic Net, позволяет выявлять сложные паттерны в макроэкономических данных и повышать точность прогнозов. Сравнительный анализ прогнозов, полученных с использованием традиционных эконометрических моделей (OLS, LTAR, BVAR, RW) и алгоритмов машинного обучения, показывает, что гибридный подход значительно снижает ошибки прогнозирования и повышает надёжность прогнозов в краткосрочном периоде. Полученные результаты могут внести вклад в совершенствование инструментов макроэкономического прогнозирования и развитие более эффективной денежно-кредитной политики, поддерживая качество принятия решений центральными банками. // In an environment of macroeconomic instability, improving the accuracy of inflation forecasting is a priority for central banks, especially those operating under inflation targeting regimes. Traditional econometric models face limitations in accounting for volatility, external shocks, and nonlinear relationships. This study aims to enhance inflation forecasting by integrating machine learning methods into the existing Selective-Combined Inflation Forecasting System (SSCIF). The inclusion of algorithms such as Ridge Regression, Lasso Regression, and Elastic Net enables the identification of complex patterns in macroeconomic data, thereby improving forecast accuracy. A comparative analysis of forecasts generated using traditional econometric models (OLS, LTAR, BVAR, RW) and machine learning algorithms demonstrates that the hybrid approach significantly reduces forecasting errors and enhances the reliability of short-term forecasts. The results contribute to the advancement of macroeconomic forecasting tools and the development of more effective monetary policy, supporting better decision-making by central banks.

Suggested Citation

  • Адилханова Зарина // Adilkhanova Zarina & Ержан Ислам // Yerzhan Islam, 2024. "Система селективно - комбинированного прогноза инфляции (SSCIF)// Selective-Combined Inflation Forecasting System," Working Papers #2024-13, National Bank of Kazakhstan.
  • Handle: RePEc:aob:wpaper:62
    as

    Download full text from publisher

    File URL: https://nationalbank.kz/file/download/106591
    File Function: Russian language version
    Download Restriction: no

    File URL: https://nationalbank.kz/file/download/106589
    File Function: English language version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    2. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    3. Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
    4. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    5. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    6. Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2016. "Forecasting macroeconomic variables in data-rich environments," Economics Letters, Elsevier, vol. 138(C), pages 50-52.
    7. Emanuel Kohlscheen, 2021. "What does machine learning say about the drivers of inflation?," BIS Working Papers 980, Bank for International Settlements.
    8. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    10. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    11. Kohei Maehashi & Mototsugu Shintani, 2020. "Macroeconomic Forecasting Using Factor Models and Machine Learning: An Application to Japan," CIRJE F-Series CIRJE-F-1146, CIRJE, Faculty of Economics, University of Tokyo.
    12. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    2. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    3. Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024. "Forecasting UK inflation bottom up," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
    4. Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
    5. Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
    6. Li, W. & Fok, D. & Franses, Ph.H.B.F., 2019. "Forecasting own brand sales: Does incorporating competition help?," Econometric Institute Research Papers EI2019-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Felipe Leal & Carlos Molina & Eduardo Zilberman, 2020. "Proyección de la Inflación en Chile con Métodos de Machine Learning," Working Papers Central Bank of Chile 860, Central Bank of Chile.
    8. Krampe, J. & Paparoditis, E. & Trenkler, C., 2023. "Structural inference in sparse high-dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 234(1), pages 276-300.
    9. Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).
    10. Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
    11. Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
    12. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    13. Amélie Charles & Olivier Darné, 2022. "Backcasting world trade growth using data reduction methods," The World Economy, Wiley Blackwell, vol. 45(10), pages 3169-3191, October.
    14. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    15. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
    16. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
    17. Ádám Csápai, 0000. "Macroeconomic Forecasting Using Machine Learning: A Case of Slovakia," Proceedings of Economics and Finance Conferences 14115967, International Institute of Social and Economic Sciences.
    18. Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
    19. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    20. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.

    More about this item

    Keywords

    инфляция; прогнозирование; индекс потребительских цен; модель; машинное обучение; эконометрические модели; точность прогнозов; inflation; forecasting; consumer price index; model; machine learning; econometric models; forecast accuracy;
    All these keywords.

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aob:wpaper:62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Saida Agambayeva (email available below). General contact details of provider: https://edirc.repec.org/data/nbkgvkz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.