IDEAS home Printed from https://ideas.repec.org/p/sce/scecfa/379.html
   My bibliography  Save this paper

Representing Uncertainty about Response Paths: the Use of Heuristic Optimisation Methods

Author

Listed:
  • Anna Staszewska

    (Chair of Econometric Models and Forecast University of Lodz)

Abstract

In impulse response analysis the construction of intervals for the response at a particular time is a familiar topic. This paper considers the construction of confidence bands for the path of reponses. It investigates the feasibility of procedures based on heuristic optimisation methods for constructing bootstrap confidence bands and evaluates the coverage properties of these bands for a stylised empirical VEC model

Suggested Citation

  • Anna Staszewska, 2006. "Representing Uncertainty about Response Paths: the Use of Heuristic Optimisation Methods," Computing in Economics and Finance 2006 379, Society for Computational Economics.
  • Handle: RePEc:sce:scecfa:379
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    2. Christopher A. Sims & Tao Zha, 1999. "Error Bands for Impulse Responses," Econometrica, Econometric Society, vol. 67(5), pages 1113-1156, September.
    3. Ben S. Bernanke & Mark Gertler, 1995. "Inside the Black Box: The Credit Channel of Monetary Policy Transmission," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 27-48, Fall.
    4. Benkwitz, Alexander & Lütkepohl, Helmut & Wolters, Jürgen, 2001. "Comparison Of Bootstrap Confidence Intervals For Impulse Responses Of German Monetary Systems," Macroeconomic Dynamics, Cambridge University Press, vol. 5(1), pages 81-100, February.
    5. John Aldrich & Anna Staszewska, 2007. "The experiment in macroeconometrics," Journal of Economic Methodology, Taylor & Francis Journals, vol. 14(2), pages 143-166.
    6. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Bruder & Michael Wolf, 2018. "Balanced Bootstrap Joint Confidence Bands for Structural Impulse Response Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(5), pages 641-664, September.
    2. repec:hum:wpaper:sfb649dp2013-031 is not listed on IDEAS
    3. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2015. "Comparison of methods for constructing joint confidence bands for impulse response functions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 782-798.
    4. Daniel Grabowski & Anna Staszewska-Bystrova & Peter Winker, 2020. "Skewness-adjusted bootstrap confidence intervals and confidence bands for impulse response functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 5-32, March.
    5. repec:hum:wpaper:sfb649dp2014-007 is not listed on IDEAS
    6. Anna Staszewska‐Bystrova, 2011. "Bootstrap prediction bands for forecast paths from vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 721-735, December.
    7. Staszewska-Bystrova Anna, 2013. "Modified Scheffé’s Prediction Bands," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(5-6), pages 680-690, October.
    8. Schüssler, Rainer & Trede, Mark, 2016. "Constructing minimum-width confidence bands," Economics Letters, Elsevier, vol. 145(C), pages 182-185.
    9. Helmut Lütkepohl & Anna Staszewska-Bystrova & Peter Winker, 2014. "Confidence Bands for Impulse Responses: Bonferroni versus Wald," Discussion Papers of DIW Berlin 1354, DIW Berlin, German Institute for Economic Research.
    10. Lynda Khalaf & Beatriz Peraza López, 2020. "Simultaneous Indirect Inference, Impulse Responses and ARMA Models," Econometrics, MDPI, vol. 8(2), pages 1-26, April.
    11. Victor Bystrov, 2014. "A factor-augmented model of markup on mortgage loans in Poland," Bank i Kredyt, Narodowy Bank Polski, vol. 45(6), pages 491-512.
    12. Anna Staszewska-Bystrova, 2009. "Bootstrap Confidence Bands for Forecast Paths," Working Papers 024, COMISEF.
    13. Antoniadis, Anestis & Brossat, Xavier & Cugliari, Jairo & Poggi, Jean-Michel, 2016. "A prediction interval for a function-valued forecast model: Application to load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 939-947.
    14. Gilli, Manfred & Winker, Peter, 2007. "2nd Special Issue on Applications of Optimization Heuristics to Estimation and Modelling Problems," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 2-3, September.
    15. Staszewska-Bystrova, Anna & Winker, Peter, 2013. "Constructing narrowest pathwise bootstrap prediction bands using threshold accepting," International Journal of Forecasting, Elsevier, vol. 29(2), pages 221-233.
    16. Manfred Gilli & Peter Winker, 2008. "Review of Heuristic Optimization Methods in Econometrics," Working Papers 001, COMISEF.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    2. Ann Cavlovic & Kathleen Day, "undated". "Equalization and the Incentives for Growth: An Empirical Investigation of the "Tax-Back" Effect," Working Papers-Department of Finance Canada 2003-23, Department of Finance Canada.
    3. Oscar Jorda, 2003. "Model-Free Impulse Responses," Working Papers 38, University of California, Davis, Department of Economics.
    4. repec:hum:wpaper:sfb649dp2006-021 is not listed on IDEAS
    5. Oscar Jorda, 2003. "Model-Free Impulse Responses," Working Papers 305, University of California, Davis, Department of Economics.
    6. Serhan Cevik & Katerina Teksoz, 2013. "Lost in Transmission? The Effectiveness of Monetary Policy Transmission Channels in the GCC Countries," Middle East Development Journal, Taylor & Francis Journals, vol. 5(3), pages 1350018-131, January.
    7. Brüggemann, Ralf, 2006. "Finite sample properties of impulse response intervals in SVECMs with long-run identifying restrictions," SFB 649 Discussion Papers 2006-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Goto, Shingo, 2000. "The Fed's Effect on Excess Returns and Inflation is Much Bigger Than You Think," University of California at Los Angeles, Anderson Graduate School of Management qt04f1z5hb, Anderson Graduate School of Management, UCLA.
    9. Kilian, Lutz & Chang, Pao-Li, 2000. "How accurate are confidence intervals for impulse responses in large VAR models?," Economics Letters, Elsevier, vol. 69(3), pages 299-307, December.
    10. Johann Burgstaller, 2006. "Bank income and profits over the business and interest rate cycle," Economics working papers 2006-11, Department of Economics, Johannes Kepler University Linz, Austria.
    11. Tomas Konecny & Oxana Babecka-Kucharcukova, 2016. "Credit Spreads and the Links between the Financial and Real Sectors in a Small Open Economy: The Case of the Czech Republic," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(4), pages 302-321, August.
    12. Estrella, Arturo, 2015. "The Price Puzzle And Var Identification," Macroeconomic Dynamics, Cambridge University Press, vol. 19(8), pages 1880-1887, December.
    13. Jean-Pierre Allegret & Cécile Couharde & Cyriac Guillaumin, 2012. "The Impact of External Shocks in East Asia: Lessons from a Structural VAR Model with Block Exogeneity," International Economics, CEPII research center, issue 132, pages 35-89.
    14. Jean Boivin & Marc P. Giannoni & Dalibor Stevanović, 2020. "Dynamic Effects of Credit Shocks in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 272-284, April.
    15. Shu Wu & Shigeru Iwata, 2004. "Estimating Monetary Policy Effects When Interest Rates are Bounded at Zero," Econometric Society 2004 Far Eastern Meetings 478, Econometric Society.
    16. Xu, T.T., 2012. "The role of credit in international business cycles," Cambridge Working Papers in Economics 1202, Faculty of Economics, University of Cambridge.
    17. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    18. Daniel Grabowski & Anna Staszewska-Bystrova & Peter Winker, 2020. "Skewness-adjusted bootstrap confidence intervals and confidence bands for impulse response functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 5-32, March.
    19. Marcet, Albert & Jarociński, Marek, 2010. "Autoregressions in small samples, priors about observables and initial conditions," Working Paper Series 1263, European Central Bank.
    20. Jonathan H. Wright, 2000. "Exact confidence intervals for impulse responses in a Gaussian vector autoregression," International Finance Discussion Papers 682, Board of Governors of the Federal Reserve System (U.S.).
    21. Marvão Pereira, Alfredo & Marvão Pereira, Rui Manuel, 2010. "Is fuel-switching a no-regrets environmental policy? VAR evidence on carbon dioxide emissions, energy consumption and economic performance in Portugal," Energy Economics, Elsevier, vol. 32(1), pages 227-242, January.

    More about this item

    Keywords

    bootstrapping; confidence bands; genetic algorithm; impulse response analysis;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.