IDEAS home Printed from https://ideas.repec.org/p/rug/rugwps/13-862.html
   My bibliography  Save this paper

Semantic Compared Cross Impact Analysis

Author

Listed:
  • D. THORLEUCHTER
  • D. VAN DEN POEL

Abstract

The aim of cross impact analysis (CIA) is to predict the impact of a first event on a second. For organization’s strategic planning, it is helpful to identify the impacts among organization’s internal events and to compare these impacts to the corresponding impacts of external events from organization’s competitors. For this, literature has introduced compared cross impact analysis (CCIA) that depicts advantages and disadvantages of the relationships between organization’s events to the relationships between competitors' events. However, CCIA is restricted to the use of patent data as representative for competitors’ events and it applies a knowledge structure based text mining approach that does not allow considering semantic aspects from highly unstructured textual information. In contrast to related work, we propose an internet based environmental scanning procedure to identify textual patterns represent competitors’ events. To enable processing of this highly unstructured textual information, the proposed methodology uses latent semantic indexing (LSI) to calculate the compared cross impacts (CCI) for an organization. A latent semantic subspace is built that consists of semantic textual patterns. These patterns are selected that represent organization’s events. A web mining approach is used for crawling textual information from the internet based on keywords extracted from each selected pattern. This textual information is projected into the same latent semantic subspace. Based on the relationships between the semantic textual patterns in the subspace, CCI is calculated for different events of an organization. A case study shows that the proposed approach successfully calculates the CCI for technologies processed by a governmental organization. This enables decision makers to direct their investments more targeted.

Suggested Citation

  • D. Thorleuchter & D. Van Den Poel, 2013. "Semantic Compared Cross Impact Analysis," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/862, Ghent University, Faculty of Economics and Business Administration.
  • Handle: RePEc:rug:rugwps:13/862
    as

    Download full text from publisher

    File URL: http://wps-feb.ugent.be/Papers/wp_13_862.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. Yu, Li & Hurley, Terrance & Kliebenstein, James & Orazem, Peter, 2012. "A test for complementarities among multiple technologies that avoids the curse of dimensionality," Economics Letters, Elsevier, vol. 116(3), pages 354-357.
    3. Bañuls, Victor A. & Turoff, Murray & Hiltz, Starr Roxanne, 2013. "Collaborative scenario modeling in emergency management through cross-impact," Technological Forecasting and Social Change, Elsevier, vol. 80(9), pages 1756-1774.
    4. Ortega Jiménez, César H. & Garrido-Vega, Pedro & Pérez Díez de los Ríos, José Luis & García González, Santiago, 2011. "Manufacturing strategy-technology relationship among auto suppliers," International Journal of Production Economics, Elsevier, vol. 133(2), pages 508-517, October.
    5. D. Thorleuchter & D. Van Den Poel & A. Prinzie, 2011. "Analyzing existing customers’ websites to improve the customer acquisition process as well as the profitability prediction in B-to-B marketing," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/733, Ghent University, Faculty of Economics and Business Administration.
    6. Grigorios Tsoumakas & Ioannis Katakis, 2007. "Multi-Label Classification: An Overview," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 3(3), pages 1-13, July.
    7. D. Thorleuchter & D. Van Den Poel, 2012. "Technology Classification with Latent Semantic Indexing," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/814, Ghent University, Faculty of Economics and Business Administration.
    8. Kauffman, Stuart & Lobo, Jose & Macready, William G., 2000. "Optimal search on a technology landscape," Journal of Economic Behavior & Organization, Elsevier, vol. 43(2), pages 141-166, October.
    9. D. Thorleuchter & D. Van Den Poel, 2012. "Protecting Research and Technology from Espionage," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/824, Ghent University, Faculty of Economics and Business Administration.
    10. D. Thorleuchter & D. Van Den Poel, 2012. "Improved Multilevel Security with Latent Semantic Indexing," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/811, Ghent University, Faculty of Economics and Business Administration.
    11. D. Thorleuchter & D. Van Den Poel, 2013. "Quantitative Cross Impact Analysis with Latent Semantic Indexing," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/861, Ghent University, Faculty of Economics and Business Administration.
    12. D. Thorleuchter & D. Van Den Poel, 2013. "Weak Signal Identification with Semantic Web Mining," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/860, Ghent University, Faculty of Economics and Business Administration.
    13. W. Buckinx & E. Moons & D. Van Den Poel & G. Wets, 2003. "Customer-Adapted Coupon Targeting Using Feature Selection," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 03/201, Ghent University, Faculty of Economics and Business Administration.
    14. D. Thorleuchter & D. Van Den Poel & A. Prinzie & -, 2010. "A compared R&D-based and patent-based cross impact analysis for identifying relationships between technologies," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/632, Ghent University, Faculty of Economics and Business Administration.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Thorleuchter & D. Van Den Poel, 2013. "Quantitative Cross Impact Analysis with Latent Semantic Indexing," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/861, Ghent University, Faculty of Economics and Business Administration.
    2. D. Thorleuchter & D. Van Den Poel, 2013. "Weak Signal Identification with Semantic Web Mining," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/860, Ghent University, Faculty of Economics and Business Administration.
    3. D. Thorleuchter & D. Van Den Poel, 2012. "Protecting Research and Technology from Espionage," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/824, Ghent University, Faculty of Economics and Business Administration.
    4. D. Thorleuchter & D. Van Den Poel, 2012. "Technology Classification with Latent Semantic Indexing," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/814, Ghent University, Faculty of Economics and Business Administration.
    5. Panula-Ontto, Juha, 2019. "The AXIOM approach for probabilistic and causal modeling with expert elicited inputs," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 292-308.
    6. Panula-Ontto, Juha & Luukkanen, Jyrki & Kaivo-oja, Jari & O'Mahony, Tadhg & Vehmas, Jarmo & Valkealahti, Seppo & Björkqvist, Tomas & Korpela, Timo & Järventausta, Pertti & Majanne, Yrjö & Kojo, Matti , 2018. "Cross-impact analysis of Finnish electricity system with increased renewables: Long-run energy policy challenges in balancing supply and consumption," Energy Policy, Elsevier, vol. 118(C), pages 504-513.
    7. Panula-Ontto, J. & Piirainen, K.A., 2018. "EXIT: An alternative approach for structural cross-impact modeling and analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 89-100.
    8. D. Thorleuchter & D. Van Den Poel, 2012. "Improved Multilevel Security with Latent Semantic Indexing," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/811, Ghent University, Faculty of Economics and Business Administration.
    9. Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2024. "Comparison of Semantic Similarity Models on Constrained Scenarios," Information Systems Frontiers, Springer, vol. 26(4), pages 1307-1330, August.
    10. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    11. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    12. Schilling, Melissa A. & Green, Elad, 2011. "Recombinant search and breakthrough idea generation: An analysis of high impact papers in the social sciences," Research Policy, Elsevier, vol. 40(10), pages 1321-1331.
    13. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    14. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    15. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    16. Jingfeng Guo & Chao Zheng & Shanshan Li & Yutong Jia & Bin Liu, 2022. "BiInfGCN: Bilateral Information Augmentation of Graph Convolutional Networks for Recommendation," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
    17. Jianfei Cao & Han Yang & Jianshu Lv & Quanyuan Wu & Baolei Zhang, 2023. "Estimating Soil Salinity with Different Levels of Vegetation Cover by Using Hyperspectral and Non-Negative Matrix Factorization Algorithm," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    18. Taalbi, Josef, 2017. "What drives innovation? Evidence from economic history," Research Policy, Elsevier, vol. 46(8), pages 1437-1453.
    19. Zhang, Lifeng & Chao, Xiangrui & Qian, Qian & Jing, Fuying, 2022. "Credit evaluation solutions for social groups with poor services in financial inclusion: A technical forecasting method," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    20. Yi Yu & Jaeseung Baek & Ali Tosyali & Myong K. Jeong, 2024. "Robust asymmetric non-negative matrix factorization for clustering nodes in directed networks," Annals of Operations Research, Springer, vol. 341(1), pages 245-265, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rug:rugwps:13/862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nathalie Verhaeghe (email available below). General contact details of provider: https://edirc.repec.org/data/ferugbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.